
On the Effectiveness of Configuration 
Error Injection Testing



Background

A Real-world Example of Misconfiguration



Related Work

A Typical Design of CEIT tool (ConfErr)

How to generate Configuration Errors?
• Random
• Typo: Mispelling, Omission ... (ConfErr)
• Mutation: (ConfDiagDetector)

• Specification Violation: (SPEX-INJ, ConfVD)



Motivation
● We want to understand the challenges and opportunities of applying 

configuration error injection testing in real-world software 
engineering practice.

Categorization Good Behavior Useful Logs All tests passed
Pinpointing-Correction √ √ √

Pinpointing-Termination √ √ ×

Unstudied ? × √
Ungraceful Termination × × ×



Research Questions
● RQ1: How about current CEIT mechanisms' abil i t ies of exposing vulnerabil i t ies?

● RQ2: Are there sti l l  unstudied test results?

● RQ3: What we can learn from these RQs?



Methodology
● Target Systems



Methodology
● Studied CEIT methods:

● 1. Random 

● 2. Mutat ion

● 3. Specif icat ion Violat ion
Example of Mutation Rules

Example of Specification Violation Rules



Methodology
● Categorization and Result Analysis

● Tests (Pass or Fai l )

● Logs (Pinpoint ing information, e.g.,  parameter name, conf igurat ion locat ion, etc.)



RQ1: Effectiveness and Efficiency
Software Bad Reactions Exposed Total Injections Vulnerabilities Exposed 

Per 1000 Injections
Random

HTTPD 0 116 0

NGINX 5(5) 277 18.1

MySQL 1(1) 114 8.8

PostgreSQL 0 232 0

Mutation

HTTPD 0 580 0

NGINX 5(6) 1385 3.6

MySQL 1(3) 570 1.8

PostgreSQL 2(4) 1160 1.7

Specification Violation

HTTPD 0 222 0

NGINX 6(8) 772 7.8

MySQL 1(3) 425 2.4

PostgreSQL 3(4) 695 4.3



RQ2: Unstudied Results

Silent resolutions refer to the undesired behaviors that correct or ignore the erroneous values, without informing 
users with explicit log messages.

False errors fundamentally break the principle of configuration error injection testing which exercises the system 
behavior upon erroneous values. The injections are in fact correct values.

Inadeuqate tests refer to the tests that cannot expose the injected errors.



RQ2: Unstudied Results

Silent Correction



RQ2: Unstudied Results

Disabled Macro



RQ2: Unstudied Results

Control dependency



RQ2: Unstudied Results

Unsafe Parsing



RQ2: Unstudied Results

Arbitrary String



RQ2: Unstudied Results

Case Alteration



RQ2: Unstudied Results

Value Selection



RQ2: Unstudied Results

Missing Triggering Conditions
• Specific workload
• Failuer Events
• Specific Environments



RQ2: Unstudied Results

Missing Oracles



RQ3: Remedies
● How to improve eff iciency?

● Sampling Parameters

● Reducing Redundant Tests

● Smarter CEIT methods

● How to reduce ineffectiveness?

● Software Design

● Less False Errors

● Adequate Tests



RQ3: Remedies
● How to improve eff iciency?

● Sampling Parameters



RQ3: Remedies
● How to improve eff iciency?

● Reducing Redundant Tests

● 81% Tests in functional test suites are redundant for CEIT

● XX% Tests have no relevance with target parameter



RQ3: Remedies
● How to improve eff iciency?

● Smarter CEIT methods

43%

14%

29%

14%

Vulnerabilities

Path
Enum
Spec String
Number



RQ3: Remedies
● How to reduce ineffectiveness?

● Software Design



RQ3: Remedies
● How to reduce ineffectiveness?

● Less False Errors



RQ3: Remedies
● How to reduce ineffectiveness?

● Adequate Tests (Future Work)



Towards Effective Test Cases Generation 
for Configuratin Error Injection Testing



● Where to test

● How to test

Challenges



Motivating Examples
User Request

Session



Motivating Examples



Motivating Examples

Function Pointer



● Dynamic Taint Analysis & Static Program Analysis

● Configurat ion Fi le -> Variables -> Sentences -> Funct ion Cal ls

● Fuzzing&Symbolic Execution

● make sure the target sentences are covered

● Repairing the test cases

Possible Solutions



Motivating Examples
Configuration File



Motivating Examples
User Request

Session



Motivating Examples
User Request

Session

p_sess'

Session'

New User Request


