
An Evolutionary Study of
Configuration Design and

Implementation in Cloud Systems
Yuanliang Zhang1,2, Haochen He1, Owolabi Legunsen3, Shanshan Li1,

Wei Dong1, Tianyin Xu2

1National University of Defense Technology
2University of Illinois at Urbana-Champaign

3Cornell University

Motivation

Complexity increases
rapidly over time

“is the parameter helpful?”
 -Spark-25676

“can we reuse an existing parameter?”
 -HDFS-13735

“what is a reasonable default value?”
 -HBase-19148

Previous: misconfiguration
detecting and diagnosing

Struggling to design and
implement configurations

Motivation

complexity increases
rapidly over time

“is the configuration helpful?”
 -Spark-25676

“can we reuse an existing parameter?”
 -HDFS-13735

“what is a reasonable default value?”
 -HBase-19148

Previous: misconfiguration
detecting and diagnosing

Struggling to design and
implement configurations

Configuration Design and Implementation
(CDI) have been largely overlooked as first-
class software engineering endeavors in
cloud systems

Motivation
• Parameter: spark.sql.codegen.cache.maxEntries (default = 100)
• Evolution activity: Parameterization

• Rationale:
"The cache 100 in CodeGenerator is too small for realtime streaming
calculation, which is mostly more complex in one driver, and performance
sensitive."

 Private val cache = CacheBuilder.newBuilder()
- .maximumSize(100)
+ .maximumSize(SQLConf.get.codegenCacheMaxEntries)

Motivation
• Parameter: spark.sql.codegen.cache.maxEntries (default = 100)
• Evolution activity: Parameterization

• Rationale:
"The cache 100 in CodeGenerator is too small for realtime streaming
calculation, which is mostly more complex in one driver, and performance
sensitive."

 Private val cache = CacheBuilder.newBuilder()
- .maximumSize(100)
+ .maximumSize(SQLConf.get.codegenCacheMaxEntries)

Evolution history can help us:
• Understand the rationale for the changes
• Learn design lessons and principles

Contributions

• Study and Insights.
• Insights that motivate future research on reducing

misconfigurations.
• Taxonomy.

• A taxonomy of cloud system configuration design and
implementation evolution.

• Dataset and code.
• https://github.com/xlab-uiuc/open-cevo

https://github.com/xlab-uiuc/open-cevo

Methodology

• 4 large-scale, widely-used, actively-maintained open-source cloud systems
• 1178 configuration-evolved commits spanning 2.5 years

Methodology

• Code diff
• Commit identification
• Source code level categorization

• Issue discussion
• Background
• Rationale

Taxonomy
• 3 categories of CDI
• 16 evolution activities

Interface
• Over 50% of parameterizations were driven by severe

consequences.
• Performance tuning and reliability are common rationales.
• Triggering use cases were often poorly discussed or documented.

• Only 28.1% of default-value changes mentioned systematic
testing; 31.3% of default changes chose values that work around
reported issues (without systematic assessment).

It probably makes sense to set it to something lower. -Spark-24297
I’m thinking something like 3000 or 5000 would be safer. -HBase-18023

Usage

• Over 50% of checks added as afterthoughts are basic (non-
emptiness and value-range checks)

• Throwing exceptions is common for handling misconfigurations;
auto-correction is not common, missing opportunities to help
users handle errors.

+ if (writeTable==null || writeTables.isEmpty()){
+ throw new IllegalArgumentException(
+ "Configuration parameter " +
+ OUTPUT_TABLE_NAME_CONF_KEY + "cannot be empty")}

HBASE-18161

Usage

• Enhance configuration-related log/exception messages by
including related parameters and providing guidance.

• We introduce 4 levels of message feedback quality
 L4: Contain parameter names and provide guidance for fixing

• Parameter reuse leads to various inconsistencies.

+ if (peerConf.get("hbase.security.authentication")
+ .equals("kerberos")) {…}

isSecurityEnabled = "kerberos".equalsIgnoreCase(
 conf.get(”hbase.security.authentication"));
if (isSecurityEnabled) {…}

HBASE-24190

Documentation

• Configuration use cases, parameter constraints and
dependencies between parameters are commonly added to
documents.

Thanks! Q&A

