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Motivation

Complexity increases
rapidly over time

“is the parameter helpful?”                       
                                         -Spark-25676

“can we reuse an existing parameter?” 
                                          -HDFS-13735
 
“what is a reasonable default value?”     
                                        -HBase-19148

Previous: misconfiguration
detecting and diagnosing

Struggling to design and
implement configurations  
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Configuration Design and Implementation 
(CDI) have been largely overlooked as first-
class software engineering endeavors in 
cloud systems



Motivation
• Parameter: spark.sql.codegen.cache.maxEntries (default = 100)
• Evolution activity: Parameterization

• Rationale:
"The cache 100 in CodeGenerator is too small for realtime streaming 
calculation, which is mostly more complex in one driver, and performance 
sensitive."

 Private val cache = CacheBuilder.newBuilder()
-      .maximumSize(100)
+     .maximumSize(SQLConf.get.codegenCacheMaxEntries)
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Evolution history can help us:
• Understand the rationale for the changes 
• Learn design lessons and principles 



Contributions

• Study and Insights. 
• Insights that motivate future research on reducing 

misconfigurations. 
• Taxonomy. 

• A taxonomy of cloud system configuration design and 
implementation evolution.

• Dataset and code. 
• https://github.com/xlab-uiuc/open-cevo

https://github.com/xlab-uiuc/open-cevo


Methodology

• 4 large-scale, widely-used, actively-maintained open-source cloud systems
• 1178 configuration-evolved commits spanning 2.5 years



Methodology

• Code diff
• Commit identification
• Source code level categorization

• Issue discussion
• Background
• Rationale



Taxonomy
• 3 categories of CDI
• 16 evolution activities



Interface
• Over 50% of parameterizations were driven by severe 

consequences.
• Performance tuning and reliability are common rationales.
• Triggering use cases were often poorly discussed or documented. 

• Only 28.1% of default-value changes mentioned systematic 
testing; 31.3% of default changes chose values that work around 
reported issues (without systematic assessment). 

It probably makes sense to set it to something lower.            -Spark-24297
I’m thinking something like 3000 or 5000 would be safer.    -HBase-18023 



Usage

• Over 50% of checks added as afterthoughts are basic (non-
emptiness and value-range checks)

• Throwing exceptions is common for handling misconfigurations; 
auto-correction is not common, missing opportunities to help 
users handle errors. 

+  if (writeTable==null || writeTables.isEmpty()){
+      throw new IllegalArgumentException(
+          "Configuration parameter "  +
+          OUTPUT_TABLE_NAME_CONF_KEY + "cannot be empty")} 

HBASE-18161



Usage

• Enhance configuration-related log/exception messages by 
including related parameters and providing guidance.

• We introduce 4 levels of message feedback quality
        L4: Contain parameter names and provide guidance for fixing 

• Parameter reuse leads to various inconsistencies. 

+    if (peerConf.get("hbase.security.authentication")
+          .equals("kerberos"))   {…}

isSecurityEnabled = "kerberos".equalsIgnoreCase( 
      conf.get(”hbase.security.authentication"));
if   (isSecurityEnabled)  {…}

HBASE-24190



Documentation

• Configuration use cases, parameter constraints and 
dependencies between parameters are commonly added to 
documents. 



Thanks! Q&A


