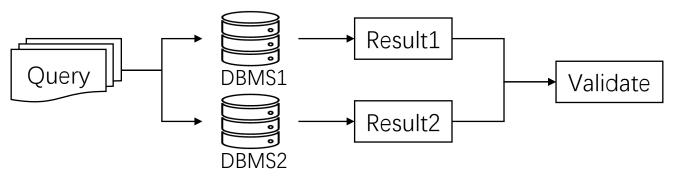

Thanos: DBMS Bug Detection via Storage Engine Rotation Based Differential Testing

Ying Fu, Zhiyong Wu, Yuanliang Zhang, Jie Liang, Jingzhou Fu, Yu Jiang *, Shanshan Li *, Xiangke Liao



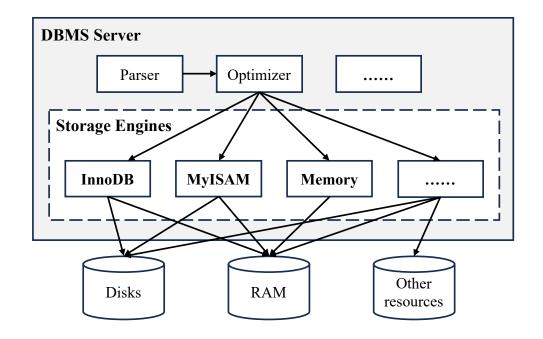
DBMS Differential Testing

• Establish test oracle efficiently

- Version-Based Comparison: may overlook real issues due to minor version variability
- Vendor-Based Comparison: limited by differences in system architecture and SQL compatibility issues
- Hard to balance tested DBMS diversity and input consistency

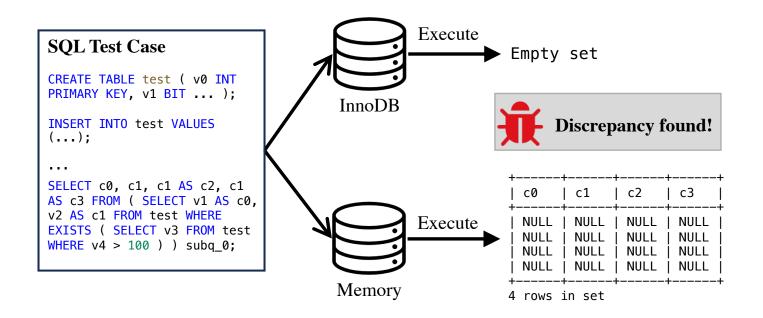
DBMS Storage Engine

• Diversity

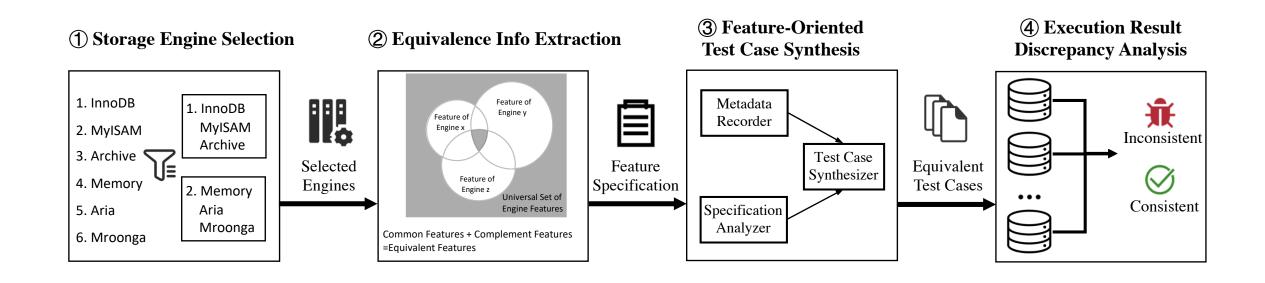

various storage engines with distinct features.

• Significance

tied to core business functionalities


• Scalability

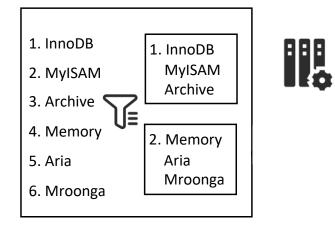
New engines can be easily integrated


Switching storage engines -> Construct testable DBMS variants

Motivating Example

- Key Advantages: Blends implementation diversity with input-level consistency
- Key challenge: Ensure DBMS equivalence across diverse storage engines

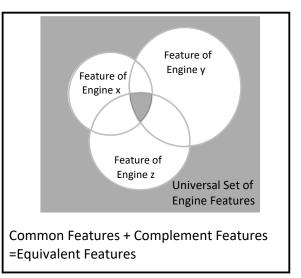
Storage Engine Rotation Based Differential Testing


Feature of Storage Engine

- Specific functionalities and attributes
- Focus on SQL-visible features
- Classified into 10 major categories
 - Data type, Index Type, Data Integrity, Partition, Encryption, Compression, Transaction, Health-Check, Cache, Update statistics
 - For example: Index type includes B-Tree, Hash, Geospatial, Clustered, Multi-valued, Full-text
 - Each category encompasses approximately 2 to 40 specific features

	Data type			Index type		Health-check		Partition	Encryption	Transaction			
	INT	BIT	BLOB		B-tree	Hash		Check	Repair	1 al tition	Encryption	Transaction	
InnoDB	~	~	~		~	×		1	~	~	~	~	
MyISAM	~	~	1		~	×		~	~	~	~	×	
Archive	~	×	1		×	×		1	~	×	~	×	
Mroonga	1	1	1		~	×		1	1	\checkmark	~	×	

Step (1)&(2) Engine Selection & Equivalence Info Extraction


- Feature-Guided Storage Engine Selection
 - Focus on feature-rich combinations to uncover more bugs
 - Selecting impactful engine sets boosts testing effectiveness

• Extract Equivalence Information

$$F_{equivalent} = \bigcap_{i=1}^{k} f_i \cup \left(U - \bigcup_{i=1}^{k} f_i \right)$$

Step ③ Feature-Oriented Test Case Synthesis

• DDL Synthesis:

Create storage structures (e.g., CREATE TABLE, CREATE INDEX)

• DML/DQL Synthesis

Generate queries and data modification operations (e.g., INSERT, UPDATE, SELECT)

• Non-standard SQL Handling

Example: CHECK TABLE or ROW_FORMAT=COMPRESSED

• Metadata pool

Track table schemas, columns, and types

Equivalent Feature Spe		Convert For Chosen Storage Engines				
Standard SQL :	None-standard SQL:		For	InnoDB:		
Data type:	CHECK TABLE		SET	default_s	torage_en	<pre>gine=INNODB;</pre>
INT, BLOB,	REPAIR TABLE			•		
Compression:		>	For MyISAM:			
			<pre>SET default_storage_engine=MYISAM;</pre>			
ROW_FORMAT=COMPRESSED			•••••			
Index:				Archive:		
HASH			<pre>SET default_storage_engine=ARCHIVE;</pre>			
				•		
Feature-Oriented Test (Me	tadata			
<pre>Construct storage CREATE TABLE Test (</pre>		+			++ IS_NULLABLE	
<pre>id INT, data ROW_FORMAT=COMPRESSE</pre>					++ YES	
CREATE INDEX i ON Te		 +	id 	int +	YES ++	
Generate storage-r ALTER TABLE Test ADD		+		, I	++	
UPDATE Test SET $c = 1$			COLUMN_NAME	DATA_TYPE	IS_NULLABLE	
INSERT INTO Test		· +	с	+ int	++ YES	
SELECT * FROM Test W		! i		blob	YES	
Add storage-relate			id	int	YES	
CHECK TABLE Test;		۲ F			++	

Step ④ Discrepancy Analysis of Execution Results

• Discrepancies in Query Results

• Discrepancies in Error Message

• Discrepancies in Database Final States

• Test case deduplication

Evaluation: New Bugs

- Evaluated on 3 DBMSs
 - MySQL、MariaDB、Percona
- 32 bugs
 - 29 were verified as Critical
 - Across 12 components

DBMS (Reported/Confirmed)	Component	Bug Severity and Number		
	Optimizer	Critical (2)		
$M_{\rm H}$ SOL (11/11)	DDL	Moderate (2)		
MySQL (11/11)	Options	Critical (1)		
	Storage Engines	Critical (4), Moderate (2)		
	Optimizer	Critical (7)		
	Storage Engines	Critical (5)		
MariaDD $(17/17)$	Window	Critical (1)		
MariaDB (17/17)	Handler	Critical (1)		
	Parser	Critical (2)		
	Update	Critical (1)		
$\mathbf{D}_{araana}(4/4)$	Optimizer	Critical (2)		
Percona (4/4)	Storage Engines	Critical (1), Moderate (1)		
Total	12 components	32 confirmed		

Case Study: Hidden Bug in MariaDB

- Mroonga storage engine
- Discrepancies in database final states
- Incorrect handling the auto increment feature

```
SET default_storage_engine=Mroonga;
CREATE TABLE test(pk INT AUTO_INCREMENT, a INT, b
        INT, c INT, d INT, PRIMARY KEY (pk), KEY (a));
INSERT INTO test(a, b) VALUES (0,100),(200,2000);
INSERT INTO test(c, d) VALUES (0,100),(200,2000);
CREATE TRIGGER tr1 AFTER UPDATE ON test FOR EACH
        ROW SET @a= 100;
UPDATE test SET b = 3 WHERE a = 0;
-- Server crash
```

Evaluation: Comparison to Other Techniques

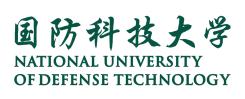
Bugs

DBMS	SQLancer	SQLsmith	SQUIRREL	THANOS
MySQL	0	1	1	6
MariaDB	0	0	1	5
Percona	0	0	1	3
Total	0	1	3	14
Increment	14 ↑	13 ↑	11 ↑	-

Covered Branches

DBMS	SQLancer	SQLsmith	SQUIRREL	THANOS
MySQL	59,242	93,742	109,323	120,156
MariaDB	60,293	88,923	100,920	132,532
Percona	63,829	89,987	109,823	143,293
Total	183,364	272,652	320,066	395,981
Increment	115.95% ↑	45.23% ↑	23.72% ↑	-

- More Bugs
- 24% ~ 116% more covered branches


Conclusion

- Idea: Constructs equivalent DBMS instances by switching storage engine
- Method: Feature-oriented test case synthesis
- Evaluation: 3 DBMSs, 32 bugs, 29/32 critical
- Future Work: Support single storage engine DBMSs

Thank you!

Please feel free to communicate via the following email. fuying@nudt.edu.cn

