
Bridging Operator Semantic Inconsistencies: A Source-Level
Cross-Framework Model Conversion Approach

Xingpei Li1, Yan Lei2, Zhouyang Jia1, Yuanliang Zhang1, Haoran Liu1, Liqian Chen1, Wei Dong1,

Shanshan Li1

1College of Computer Science and Technology

National University of Defense Technology
Changsha, China

2School of Big Data & Software Engineering
Chongqing University

Chongqing, China

The rise of DL frameworks underscores the importance of model reuse
Background

Theano Caffe DL4J
Torch

TensorFlow[1]

Keras
Mxnet

PyTorch[2]

CNTK
Paddle[3]

 Caffe2
 GLUON

MindSpore
Jittor
Megengine

2010 2013 2014 2015 2016 2017 2020~

[1] Abadi M, Barham P, Chen J, et al. TensorFlow: a system for Large-Scale machine learning[C]//12th USENIX symposium on operating systems design and implementation (OSDI 16). 2016: 265-283.
[2] Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-performance deep learning library[J]. Advances in neural information processing systems, 2019, 32.
[3] Ma Y, Yu D, Wu T, et al. PaddlePaddle: An open-source deep learning platform from industrial practice[J]. Frontiers of Data and Domputing, 2019, 1(1): 105-115.

High-quality cross-framework conversion is critical to ensure consistent
model performance and interoperability

Target Framework
Model Code

Background
Current converters can map API syntax but ignore operator

implementation, causing semantic inconsistency

Source Framework
Model Code

Intermediate
Representation
（e.g., onnx）

Operator API → IR

 onnx.export(...)

IR → Operator API

onnx_tf.backend.
prepare(...)

Transpiling operator names/parameters via graph structures[4,5]

Standardizing operator interfaces as cross-framework APIs[6,7,8]

[4] ONNX. 2017. Open Neural Network Exchange. https://onnx.ai/.
[5] Yu Liu, Cheng Chen, Ru Zhang, Tingting Qin, Xiang Ji, Haoxiang Lin, and Mao Yang. 2020. Enhancing the interoperability between deep learning frameworks by model conversion. In Proceedings of the 28th ACM
joint meetingon European software engineering conference and symposium on the foundations of software engineering. 1320–1330.
[6] Daniel Lenton, Fabio Pardo, Fabian Falck, Stephen James, and Ronald Clark. 2021. Ivy: Templated deep learning for inter-framework portability. arXiv preprint arXiv:2102.02886 (2021).
[7] Baidu. 2022. PaConvert. https://github.com/PaddlePaddle/PaConvert.
[8] Linyuan Gong, Jiayi Wang, and Alvin Cheung. 2024. ADELT: transpilation between deep learning frameworks. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence. 6279–6287.

Motivation
Semantic inconsistency potentially cause crash or performance issue

These inconsistencies are rooted in DL framework source code

Motivation
Limitation of Related Works

Graph-based Model Converters[4,5]: Treating operators as black-box

nodes, ignoring framework source code

API-based Model Converters[6,7,8]: Treating operators as uniform APIs,

hiding framework source code difference

[4] ONNX. 2017. Open Neural Network Exchange. https://onnx.ai/.
[5] Yu Liu, Cheng Chen, Ru Zhang, Tingting Qin, Xiang Ji, Haoxiang Lin, and Mao Yang. 2020. Enhancing the interoperability between deep learning frameworks by model conversion. In Proceedings of the 28th ACM
joint meetingon European software engineering conference and symposium on the foundations of software engineering. 1320–1330.
[6] Daniel Lenton, Fabio Pardo, Fabian Falck, Stephen James, and Ronald Clark. 2021. Ivy: Templated deep learning for inter-framework portability. arXiv preprint arXiv:2102.02886 (2021).
[7] Baidu. 2022. PaConvert. https://github.com/PaddlePaddle/PaConvert.
[8] Linyuan Gong, Jiayi Wang, and Alvin Cheung. 2024. ADELT: transpilation between deep learning frameworks. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence. 6279–6287.

Motivation

Modifying framework source code to bridge operator semantic

inconsistencies during model conversion

Limitation of Related Works

Graph-based Model Converters[4,5]: Treating operators as black-box

nodes, ignoring framework source code

API-based Model Converters[6,7,8]: Treating operators as uniform APIs,

hiding framework source code difference

[4] ONNX. 2017. Open Neural Network Exchange. https://onnx.ai/.
[5] Yu Liu, Cheng Chen, Ru Zhang, Tingting Qin, Xiang Ji, Haoxiang Lin, and Mao Yang. 2020. Enhancing the interoperability between deep learning frameworks by model conversion. In Proceedings of the 28th ACM
joint meetingon European software engineering conference and symposium on the foundations of software engineering. 1320–1330.
[6] Daniel Lenton, Fabio Pardo, Fabian Falck, Stephen James, and Ronald Clark. 2021. Ivy: Templated deep learning for inter-framework portability. arXiv preprint arXiv:2102.02886 (2021).
[7] Baidu. 2022. PaConvert. https://github.com/PaddlePaddle/PaConvert.
[8] Linyuan Gong, Jiayi Wang, and Alvin Cheung. 2024. ADELT: transpilation between deep learning frameworks. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence. 6279–6287.

Challenge
Two key challenges:

Extracting relevant framework code and locating modification point between

frameworks

Aligning framework code across different layers within the target framework

...
(scalar_t a , scalar_t b){
 return std::trunc (a / b) ;
}
...

...
(const T a , const T b) const{
 return a / b;
}
...

Python Underlying Library

C Underlying Library

Framework
Multi-Layer

Structure dependency ?

Contribution

First empirical study on operator semantic inconsistencies in cross-

framework conversion

Source-level DL converter (ModelX) overcoming API mapping

limitations via modifying framework source code

PyTorch↔Paddle auto-conversion with superior reliability (52 multi-

domain models) vs. ONNX/PaConvert

Empirical Study

Investigated operator inconsistencies in 1,349 PyTorch↔Paddle

conversions

Empirical Study

Investigated operator inconsistencies in 1,349 PyTorch↔Paddle

conversions

Methodology Workflow：

Manual API mapping analysis

Automated Framework code tracing for semantic inconsistencies

Operator mapping table (686 PyTorch operators; 663 Paddle operators)

Taxonomy of operator inconsistencies

Empirical Study

Operator
Inconsistencies

Syntax
inconsistencise

53%

Semantic
inconsistencies

36%

Operator
Missing

11%
Error Handling

52, 4%

Computational Logic
334, 25%

Tensor Representation
 102, 7%

Function
Signature
683, 51%

Invocation
Pattern
29, 2%

712

488

149

0
100
200
300
400
500
600
700
800

Operator Syntax
Inconsistency

Operator Semantic
Inconsistency

Operator Missing

Number

47% of operators alter semantics from divergent root causes

Empirical Study

Operator
Inconsistencies

Syntax
inconsistencise

53%

Semantic
inconsistencies

36%

Operator
Missing

11%
Error Handling

52, 4%

Computational Logic
334, 25%

Tensor Representation
 102, 7%

Function
Signature
683, 51%

Invocation
Pattern
29, 2%

712

488

149

0
100
200
300
400
500
600
700
800

Operator Syntax
Inconsistency

Operator Semantic
Inconsistency

Operator Missing

Number

47% of operators alter semantics from divergent root causes
Critical to resolve via type-specific alignment

Empirical Study
Semantic-inconsistency code in layers without inter-dependencies

Empirical Study
Semantic-inconsistency code in layers without inter-dependencies
 Allow per-layer isolation during resolution

Desgin

Source Model
Code

Operator
Mapping Table
（from study）

Target Model
Code

 Source Framwork
Operator Extraction and

Analysis

Operator Inconsistency
Categorization

Source Framework
Operator Set Os

Syntax
Inconsistency

Direct Operator API Mapping

Operator Building

Operator
Missing

Semantic
Inconsistency

On-Demand Layered Alignment

Desgin
Operator Mapping Flow：

Direct Operator API Mapping

 1. Mapping API name and parameters

Desgin
Operator Mapping Flow：

Direct Operator API Mapping

On-Demand Layered Alignment

 1. Mapping partial operator API

 2. Aligning framework code to reconcile incompatible API parameters

Modified
framework
python files

Modified
framework

C files

Imported
.py module

Compiled
.so/.dll

Dynamic
linking

Import path
modification

Desgin
Operator Mapping Flow：

Direct Operator API Mapping

On-Demand Layered Alignment

Operator Building

 1. Analyzing function call stack

 2. Parsing function call

 3. Generating equivlant approximate code
...

addcdiv_cpu_kernel: ...

...

addcdiv_cpu_kernel(...){
...
return ...
... }

Sub Function Call: ...
Argument List: ...
Arithmetic Operator: ...
...

Kernel function and
relevant sub functions

Parsed element order
approximate code

snippetsFunction call stack
information

Evaluation

Research Question

Compare with ONNX, PaConvert, and LLMs(GPT-4o, GPT-3.5,

DeepSeek-Coder)

Test on 686 sampled PyTorch operators

Assess conversion success rate and error metrics (MAE/RMSE)

Robustness

Test

Evaluation

Performance vs. SOTA

Evaluation metrics increased by approximately 2% on average

Inference latency was lower (0.46% lower than ONNX; 1.50% lower than PaConvert)

Evaluation

Performance vs. SOTA

LLMs cannot resolve semantic inconsistencies in operators – they can only modify

syntactic interfaces, but cannot supplement underlying source code.

Evaluation
Reliability & Equivalence

Successfully converted 91% of PyTorch operators (624/686)

with a >95% success rate for critical categories (e.g., tensor operators and
layer operators)

The unsupported 9% primarily stems from:

Dependencies on framework-specific mechanisms

Prohibitively high migration costs

Evaluation
Robustness

ModelX consistently maintains the smallest performance gap across vision, text,

and audio tasks, outperforming baseline tools.

Thanks！

Contact: lixingpei123@nudt.edu.cn

