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The rise of DL frameworks underscores the importance of model reuse
Background
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High-quality cross-framework conversion is critical to ensure consistent 
model performance and interoperability



Target Framework 
Model Code

Background
Current converters can map API syntax but ignore operator 

implementation, causing semantic inconsistency

 

Source Framework 
Model Code

Intermediate 
Representation
（e.g., onnx）

Operator API → IR

  onnx.export(...)

IR → Operator API

onnx_tf.backend.
prepare(...)

Transpiling operator names/parameters via graph structures[4,5]

Standardizing operator interfaces as cross-framework APIs[6,7,8]
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Motivation
Semantic inconsistency potentially cause crash or performance issue

These inconsistencies are rooted in DL framework source code



Motivation
Limitation of Related Works

Graph-based Model Converters[4,5]: Treating operators as black-box 

nodes, ignoring framework source code

API-based Model Converters[6,7,8]: Treating operators as uniform APIs, 

hiding framework source code difference
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Motivation

Modifying framework source code to bridge operator semantic 

inconsistencies during model conversion

Limitation of Related Works

Graph-based Model Converters[4,5]: Treating operators as black-box 

nodes, ignoring framework source code

API-based Model Converters[6,7,8]: Treating operators as uniform APIs, 

hiding framework source code difference
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Challenge
Two key challenges: 

Extracting relevant framework code and locating modification point between 

frameworks

Aligning framework code across different layers within the target framework

...
( scalar_t a , scalar_t b){
  return std::trunc (a / b) ;
} 
...

...
(const T a , const T b) const{ 
  return a / b;
}
...

Python Underlying Library

C Underlying Library

Framework
Multi-Layer

Structure  dependency ?



Contribution

First empirical study on operator semantic inconsistencies in cross-

framework conversion

Source-level DL converter ( ModelX ) overcoming API mapping 

limitations via modifying framework source code 

PyTorch↔Paddle auto-conversion with superior reliability ( 52 multi-

domain models ) vs. ONNX/PaConvert



Empirical Study

Investigated operator inconsistencies in 1,349 PyTorch↔Paddle 

conversions



Empirical Study

Investigated operator inconsistencies in 1,349 PyTorch↔Paddle 

conversions

Methodology Workflow：

Manual API mapping analysis

Automated Framework code tracing for semantic inconsistencies

Operator mapping table (686 PyTorch operators; 663 Paddle operators)

Taxonomy of operator inconsistencies



Empirical Study
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47% of operators alter semantics from divergent root causes 
Critical to resolve via type-specific alignment



Empirical Study
Semantic-inconsistency code in layers without inter-dependencies



Empirical Study
Semantic-inconsistency code in layers without inter-dependencies
 Allow per-layer isolation during resolution



Desgin

Source Model 
Code

Operator 
Mapping Table
（from study）

Target Model 
Code

 Source Framwork 
Operator Extraction and 

Analysis  

Operator Inconsistency 
Categorization

Source Framework 
Operator Set Os

Syntax
Inconsistency

Direct Operator API Mapping

Operator Building 

Operator
Missing

Semantic
Inconsistency

On-Demand Layered Alignment



Desgin
Operator Mapping Flow：

Direct Operator API Mapping

     1. Mapping API name and parameters



Desgin
Operator Mapping Flow：

Direct Operator API Mapping

On-Demand Layered Alignment

     1. Mapping partial operator API      

     2. Aligning framework code to reconcile incompatible API parameters

Modified 
framework 
python files

Modified
framework 

C files

Imported
.py module

Compiled
.so/.dll 

Dynamic 
linking

Import path
modification



Desgin
Operator Mapping Flow：

Direct Operator API Mapping

On-Demand Layered Alignment

Operator Building 

     1.  Analyzing function call stack

     2.  Parsing function call

     3.  Generating equivlant approximate code  
...

addcdiv_cpu_kernel: ...

...

addcdiv_cpu_kernel(...){ 
...
return ... 
... }

Sub Function Call: ...
Argument List: ...
Arithmetic Operator: ...
...

Kernel function and 
relevant sub functions

Parsed element order 
approximate code

snippetsFunction call stack
information



Evaluation

Research Question  

Compare with ONNX, PaConvert, and LLMs(GPT-4o, GPT-3.5, 

DeepSeek-Coder)

Test on 686 sampled PyTorch operators

Assess conversion success rate and error metrics (MAE/RMSE)

Robustness

Test



Evaluation

Performance vs. SOTA

Evaluation metrics increased by approximately 2% on average

Inference latency was lower (0.46% lower than ONNX; 1.50% lower than PaConvert)



Evaluation

Performance vs. SOTA

LLMs cannot resolve semantic inconsistencies in operators – they can only modify 

syntactic interfaces, but cannot supplement underlying source code.



Evaluation
Reliability & Equivalence  

Successfully converted 91% of PyTorch operators (624/686)

with a >95% success rate for critical categories (e.g., tensor operators and 
layer operators)

The unsupported 9% primarily stems from:

Dependencies on framework-specific mechanisms

Prohibitively high migration costs 



Evaluation
Robustness

ModelX consistently maintains the smallest performance gap across vision, text, 

and audio tasks, outperforming baseline tools.
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