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Abstract—As Solid State Drives (SSDs) continue to
evolve, the presence of tail latency within these devices
remains a significant issue that can adversely affect
overall performance. Various factors contribute to the
emergence of tail latency spikes in SSDs. Current
software-level management solutions primarily focus on
the performance prediction of individual I/O operations,
recognizing that persistent slow operations are prevalent
in SSDs and tend to have a more pronounced impact.
In this paper, we build a tool-LatVision to obtain I/O-
related data directly from the kernel to predict persisting
tail latency in SSDs by a neural network model. We
conduct a comprehensive comparison and analysis of the
input metrics and predictive models employed. Further-
more, we enhance LatVision’s performance through the
application of heuristic algorithms. Through LatVision,
we achieve real-time, lightweight, and high-accuracy
performance prediction for low-latency SSDs.

Index Terms—Tail Latency, Performance Prediction,
Neural Network Model
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I. INTRODUCTION

Over the last decade, Solid State Drives (SSDs) [1]
have marked a significant evolution, heralding a new
era of speed and reliability over their mechanical
counterparts. The adoption of SSDs across various
sectors—from personal computing to enterprise-level
data centers—has been driven by their ability to offer
drastically reduced access times and enhanced dura-
bility [2]. However, the increasing performance expec-
tations from SSDs also spotlight a critical challenge:
tail latency [3]. Tail latency refers to the unusually
long response times observed during accessing SSDs,
which, despite representing a small fraction of overall
operations, can drastically degrade the user experience
and system efficiency [4], [5].

This issue of tail latency in SSDs is particularly trou-
bling as it often occurs sporadically but with enough
frequency to impact critical operations and system
throughput significantly [6]. Such latency spikes can
arise from a variety of factors, including garbage
collection [7] processes within the drive, firmware
bugs [8], or simply due to the drive reaching its
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performance limits under heavy load conditions [9].
The unpredictability and severity of these events make
them a crucial area of focus for system architects and
performance engineers.

Currently, the management of tail latency employs
two principal approaches. On the hardware front, mod-
ifications can be made to the flash controller [10],
[11] to optimize the internal mechanisms of flash
memory, thereby reducing the incidence of tail latency.
On the software front, flexible handling of hardware-
induced tail latency [12] can be implemented to miti-
gate its impact. Nonetheless, existing approaches often
lack efficiency in handling persisting tail latency (i.e.
continuous slow I/Os), which are more consequential
than isolated incidents. Focusing on individual slow
predictions is not meaningful, as the overhead associ-
ated with switching, even if predicted, is substantial.
Continuous slow I/Os not only persist but are also
correlated with numerous performance metrics, making
them predictable.

Given these challenges, this paper introduces a
novel software-level tool-LatVision designed for the
prediction of persisting tail latency in SSDs. The tool’s
architecture encompasses three main components: (1)
the use of extended Berkeley Packet Filter (eBPF [13]–
[15]) for data collection directly from the kernel, (2)
feeding this data into a predictive model, and (3) em-
ploying a heuristic algorithm to refine the predictions.

In our selection of a predictive model, we conduct
an in-depth comparison of various established classi-
fication models. We evaluate the advantages and dis-
advantages of each model based on both accuracy and
computational load. Ultimately, MobileNet is selected
as the foundational framework for our predictive model
due to its light overhead and high accuracy.

In terms of metric selection, our goal is to achieve
the best predictive performance with the fewest pos-
sible parameters. We decide on the following three
categories of metrics for model input: (1) Recent I/O
information, (2) Remaining disk space, (3) Number
of active related threads. Specifically, the ’Recent I/O
information’ includes the number of currently pending
I/O operations, the latency of the most recently com-
pleted R I/O operations, and the number of pending I/O
operations at the time each of the R completed I/Os
arrived. Notably, the parameter R can be customized
by the user.

In summary, our paper makes three key contribu-
tions:

• To our knowledge, LatVision is the first tool de-
signed for performance prediction of low-latency

devices at the user level. We believe our study
will leads to exciting discussions and questions
that can spur future work.

• We present a tool-LatVision characterized by
low operational overhead and high accuracy. We
publish our tool on Github: https://github.com/
Anonymous3pp/LatVision.

• An in-depth comparison and evaluation of model
and metric selection bases, demonstrating the
effectiveness of our approach in enhancing the
predictability of persisting tail latency. This work
not only sheds light on the underlying dynamics
of SSD performance but also paves the way to
help mitigate the impact of tail latency on system
operations in future.

II. BACKGROUND AND RELATED WORK

A. SSD Architecture

Solid State Drives (SSDs) [1] have revolutionized
the storage industry by offering significant improve-
ments in speed, reliability, and energy efficiency com-
pared to traditional hard disk drives (HDDs).

With the continual advancement of technologies
such as NVMe (Non-Volatile Memory Express) [16]
and 3D NAND [17], the read and write performance
of Solid State Drives (SSDs) has undergone a signifi-
cant enhancement by several orders of magnitude. For
instance, consider the Intel X-25E SATA SSD, which
exhibited a read latency of 75 milliseconds. In contrast,
the latest SSDs like the Samsung 980Pro NVMe SSD
boast a remarkable reduction in read latency, requiring
a mere 5 microseconds for the same operation.

The ramifications of this technological evolution are
profound, as modern SSDs not only outpace tradi-
tional mechanical hard drives in terms of read/write
speeds but also exhibit significant advancements in
responsiveness, energy efficiency, and reliability. Con-
sequently, SSDs have emerged as the preferred storage
solution for a diverse array of computing environments,
ranging from personal computing devices to enterprise-
grade servers and data centers.

B. Tail Latency

Tail Latency is a common phenomenon in disk
systems [4], [6], [18]. In large-scale disk arrays, tail
latency can potentially lead to a decrease in overall
system performance [4]. In some complex situations,
it may even cause system crashes [3], resulting in very
serious consequences.

The fundamental reasons for tail latency in SSDs
can be attributed to two main aspects. Firstly, external
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factors significantly impact SSD performance. For in-
stance, elevated environmental temperatures may cause
SSDs to operate at lower speeds due to thermal con-
straints or trigger thermal management mechanisms,
thereby affecting disk response times. Similarly, power
fluctuations or instability [19] can also negatively im-
pact SSD performance, leading to the occurrence of
tail latency.

Another crucial factor contributing to the occurrence
of tail latency in SSDs is the nature of flash memory
mechanisms itself [2], [8], [20]. Flash storage devices
employ mechanisms such as garbage collection and
load balancing to maintain their internal states, ensur-
ing efficient data management and reliability. However,
these internal mechanisms may result in the execu-
tion time of certain operations exceeding expectations,
thus causing tail latency. For example, when SSDs
perform garbage collection operations, they may con-
sume significant system resources, leading to increased
response times for other operations and consequently
triggering tail latency phenomena.

C. Tail Latency Management

In addressing and managing tail latency, there have
been significant advancements in current research ef-
forts, effectively addressing some issues and achieving
favorable outcomes. On the hardware front, Huaicheng
Li’s IODA [10] approach, through proactive data re-
construction, enables predictable I/O operations, while
IODA introduces busy-idle time exposure and pre-
dictable latency window formulas to ensure predictable
data reconstruction, especially when dealing with con-
current internal operations. Additionally, the introduc-
tion of five new fields into the NVMe interface has
greatly improved the 95-99.99th percentile latency.

Furthermore, Amy Tai [11] proposes a novel method
for enhancing SSD performance by employing Cali-
brated Interrupts to service latency-sensitive requests.
This approach significantly boosts system throughput
while reducing latency by 37% under merged inter-
rupts.

In the realm of software, Mingzhe Hao introduces
LinnOS [12], which utilizes optical neural networks to
infer SSD performance at a fine-grained per I/O level,
aiding parallel storage applications in achieving per-
formance predictability. Moreover, LinnOS integrates
machine learning into the operating system for real-
time decision-making, effectively reducing tail latency.

III. MOTIVATION

A. Overhead Trade-off

Predicting I/O operations within disk systems
presents a viable solution to enhance performance and
alleviate latency concerns. However, the intrinsic low-
latency attributes of Solid State Drives (SSDs) intro-
duce the potential for unwarranted overhead during
prediction and processing phases. Employing exceed-
ingly lightweight models with minimal input may lead
to compromised accuracy due to resource constraints,
particularly evident in high-performance environments
where even a single false positive could trigger er-
roneous processing, potentially yielding consequences
more severe than tail latency. Conversely, pursuit of
higher model accuracy through the utilization of more
intricate models amplifies the computational overhead
during the prediction phase, thereby exerting notable
pressure on SSD read-write operations. LinnOS [12]
adopts the former approach, leveraging lightweight
models to predict the low-speed status of each I/O
passing through SSDs, redirecting those identified as
low-speed for processing onto redundant devices.

In addition to the aforementioned overhead consid-
erations, the re-routing of slow I/O operations entails a
significant temporal expense. Preliminary experimental
evaluations indicate that a simple re-routing switch
may incur a latency ranging from 3-10µs, whereas the
latency per I/O operation typically hovers around 9-
20µs, rendering the re-routing latency non-negligible.
The design of LinnOS [12] detects and performs
possible redirection for each I/O, which indeed reduces
the overhead caused by slow I/O, but also introduces
frequent redirection overhead. This is not significant
for a single slow I/O, and may even have a coun-
terproductive effect in some situations (such as false
positives in judgment results).

B. Continuous I/Os vs Single I/O

However, some studies on SSD tail latency have
noted a certain correlation in the temporal dimension
of NVMe SSDs [4]. To investigate this, we conducted
validation experiments related to continuous slow I/Os.
We record the delay of each I/O in the actual workload,
randomly select a time window of 1000 I/Os. And then
we use a labeling algorithm (detailed in Section IV-B1)
to label it as fast or slow. In our tool, continuous slow
I/O is defined as k consecutive individual I/Os as slow
I/O. Our preliminary analysis of the data indicate that
continuous occurrences of slow I/Os (k≥5) accounted
for 56% of all slow I/Os. Fig.1 shows the performance
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Fig. 1. Slowdown when encountering single slow I/O and contin-
uous slow I/Os. Explained in Section III-B.

slowdown of Filebench [21] and Fio [22] when en-
countering single slow I/O and continuous slow I/O
under three different workloads. As shown in Fig.1,
continuous slow I/Os has a more severe impact on
upper-layer software. It makes sense to focus more
attention on continuous slow I/Os.

Simultaneously, in our testing, we observed that
continuous slow I/Os often exhibit distinct patterns
and have a strong correlation with factors such as
queue length, I/O size, and waiting time. Therefore,
continuous slow I/Os can be predicted reasonably.
This discovery inspired us to attempt a new approach:
instead of observing each individual I/O, we expanded
the observation window to a group of I/Os, such as n
consecutive I/Os (where n=40). Based on the character-
istic information of the previous n I/Os, we utilized a
model to predict whether subsequent occurrences of y
slow I/Os (where y≥5) would happen. If it is predicted
that multiple slow I/Os will occur consecutively, it
indicates that the current device is operating at a slow
speed, rather than at its normal operating speed.

C. Unsuccessful Attempts and Challenges

As a tool for addressing tail latency issues at the
software level, LinnOS achieves a high level of accu-
racy in predicting individual I/O operations. LinnOS
embeds a neural network structure within the operating
system kernel, receiving feature information for each
I/O operation and using this data for prediction. We
extended LinnOS by enhancing its ability to predict
consecutive instances of slow I/O operations. However,
due to latency constraints, we considered predicting
three consecutive instances of slowness as indicative
of forecasting a sequence of slow I/O. Under this
condition, LinnOS’s accuracy decreased to 49.7%, ac-
companied by an additional 2.3x overhead. Therefore,

predicting within the operating system kernel poses
significant challenges and is not the optimal solution.

Efficiently predicting whether a device is operating
at a slow pace presents a formidable challenge in our
quest to design a tool employing a more granular
model for forecasting. In striving for both accuracy
and minimal additional overhead in our predictive
endeavors, we confront several key challenges:

Acquiring Relevant I/O Data: I/O characteristics
serve as the foundation for prediction; however, the
availability of I/O-related metrics in user space is
notably limited. Moreover, these metrics often consti-
tute macro-level indicators, rendering them insufficient
for precise prediction. To preserve the accuracy of
our model, we must employ non-intrusive methods to
extract I/O information from kernel space, all while en-
suring that our data collection methods do not impose
unacceptable overhead on I/O operations.

Determining Appropriate Metrics: To predict the
current operational state of a device accurately, a mul-
titude of metrics is at our disposal. At a macroscopic
level, system metrics such as CPU utilization, memory
usage, and device state indicators like temperature and
utilization rates serve as potential input parameters.
Delving into kernel-level I/O granularity, factors such
as current I/O size, queue length, and cumulative wait
time are considered. Furthermore, over a temporal
span, historical I/O information is pivotal in inferring
whether an SSD, for instance, is currently experiencing
internal workload. Put succinctly, if preceding I/O
operations have encountered prolonged latency, the
likelihood of the disk operating at a sluggish pace is
considerably high.

Selecting an Appropriate Model Structure: The rapid
evolution of neural networks and the increasing com-
plexity of AI capabilities pose a challenge in se-
lecting an apt model from a plethora of options for
predictive tasks. Furthermore, the accuracy and cost
of the model are still trade off. Although predictions
may not target every individual I/O operation, real-
time responsiveness remains paramount, necessitating
constant awareness of the current device’s operational
status. Thus, the speed of model execution stands as a
critical metric for evaluating the efficacy of our tool.

IV. DESIGN

In this section, we describe our solution to the
challenges mentioned above. This section presents the
final design and the principal intuitions about how we
get there. Section IV-A introduces the overall workflow
of LatVision. And then we will explain the design of
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Fig. 2. Workflow of LatVision. Explained in Section IV-A.

LatVision from the following three parts: data collec-
tion (Section IV-B), metric selection (Section IV-C),
model selection (Section IV-D) and optimization (Sec-
tion IV-E).

A. Overview

The overall workflow of LatVision is illustrated in
Fig.2. Our work consists of the following steps: 1.
Running the workloads on SSDs. 2. Utilizing eBPF
to collect relevant feature information. 3. Using the
collected data for prediction. 4. Providing the predicted
results to the operating system or users.

The prediction module is further divided into three
key parts. Firstly, the selection of metrics, determining
which metrics to use as inputs for the model. Secondly,
the selection of the model, comparing the predic-
tion accuracy of various classification models. Finally,
proposing optimization algorithms for addressing false
positives in the prediction model, further enhancing the
model’s predictive capabilities.

B. Data Collection

To achieve our goal of creating a non-intrusive
predictive tool, we must contend with the limited
information available at the user level. Not only do
we require access to overarching device operational
parameters, but also the historical data of every I/O
operation over time is crucial for the efficacy of our
tool. The key of this challenge lies in the real-time
transmission of I/O-related information from the kernel
space to the user space.

To address this issue, we employ eBPF (extended
Berkeley Packet Filter) [13], [14] tools for data collec-
tion. eBPF serves as a hooking mechanism provided
by the kernel. Leveraging kernel runtime eBPF tools
enables the triggering of corresponding hook functions
within the kernel upon the execution of I/O-related

functions. These hook functions, pre-defined in nature,
allow us to record pertinent I/O information and trans-
mit it to the user space. In doing so, we acquire real-
time data regarding I/O operations.

1) Labeling: Utilizing a supervised classification
methodology necessitates training the model with la-
beled data. However, assigning actual microsecond-
level latency labels to every I/O operation may in-
undate our dataset with excessive labels, particularly
since minor delays such as 1µs may not significantly
impact user experience. To mitigate this, alternative
labeling strategies such as linear (e.g., 0-10µs, 10-
20µs) or exponential (e.g., 2-4µs, 4-8µs) intervals have
been explored. Although these labeling schemes offer
a better fit, achieving high accuracy and speed in the
model remains challenging even after multiple design
iterations.

Taking into consideration the complexities outlined
above and drawing insights from prior research on
performance variance, it is observed that latency often
adhere to a Pareto distribution characterized by a high
alpha value. As depicted in Fig.3(a), approximately
90% of the time, latency exhibit stability, while the
remaining 10% manifest as an elongated tail, indicative
of sporadic delays. This Pareto distribution effectively
delineates between swift and sluggish latency regions.
Consequently, a plausible conjecture emerges suggest-
ing that users are primarily concerned with the tail-end
behavior of latency rather than precise microsecond
values.

When determining the labeling point, we define it
as the point below which latency indicates normal
operation for an I/O operation, while latency exceeding
this threshold signifies tail latency. We experimented
with different slopes (ranging from 30° to 75° in
increments of 5°) of lines tangent to the distribution
curve to identify the optimal landmark position. Upon
analysis, we found that the impact on predictive results
was minimal when using lines with slopes between 40°
and 60° tangent to the curve. Therefore, we chose the
50° line corresponding to the tangent point of the curve
as the final landmark position as shown in Fig.3(b)(c).

It is worth noting that the shape of this distribution
curve is influenced by various factors in the actual
operating environment, including workload conditions.
Hence, periodic retraining of the model is deemed
necessary.

C. Metric Selection

In order to predict the occurrence of slow-running
scenarios during device operation, the metrics inputted
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into the predictive model are of paramount importance.
Our model selects the following types of features for
input:

The number of currently pending I/Os: The current
count of pending I/O operations determines the level
of congestion in reads and writes. If there are a signif-
icant number of I/O operations awaiting processing, it
indicates that the device is likely experiencing a high
level of activity, thereby increasing the probability of
encountering tail latency.

The latency of the R most recently completed I/Os:
The recent latency of the R most recent I/O operations
also reflects the current operational state of the device.
Here, we set the value of R to 20, which will also be
subject to discussion in subsequent experimental tests.

The number of pending I/Os at the time when each
of the R completed I/Os arrived: Predicting the internal
state of the device from the number of pending I/Os at
the time of completion of each recent I/O operation. In
essence, if recent I/O operations experience prolonged
latency without many pending I/Os, the model can
infer internal contention due to device-level activities
such as garbage collection, internal flushing, or wear
leveling, potentially leading to tail latency.

Device space utilization rate: This macroscopic indi-
cator aids in assessing whether the device may engage
in activities such as garbage collection, providing sig-
nificance to the prediction of device slow states. As
macro metrics, data changes are not significant in the
short term, so in order to save time, we collect data
every 5 seconds.

System-level metrics: The number of active threads
relevant to the current device. For an active thread that
has previously sent I/O requests to the device, it is
considered relevant to the current device because it is
likely to continue sending I/O requests. The higher the
number of active threads, the greater the potential for
congestion.

D. Model Selection

Given that LatVision requires a binary classification
task and rapid decision-making, we refrain from se-
lecting overly complex models. We have experimented
with the following mature classification models:1D
Convolutional Neural Network (1D CNN) [23], Deep
Neural Network (DNN) [24], Recurrent Neural Net-
work (RNN) [25], Residual Network (ResNet) [26],
EfficientNet [27], MobileNet [28]. These models each
have their own advantages. After testing and compar-
ing them, we choose the model that is more suitable
for predicting SSD performance.

Given that LatVision requires a binary classification
task and rapid decision-making, we refrain from se-
lecting overly complex models. We have experimented
with the following mature classification models:

1D Convolutional Neural Network (1D CNN) [23]:
1D CNNs excel in processing sequential data, making
them suitable for feature extraction and classification
of time-series data.

Deep Neural Network (DNN) [24]: DNNs are clas-
sical deep learning models suitable for various types of
data, including images, text, and numerical data, with
strong representation capabilities and flexibility.

Recurrent Neural Network (RNN) [25]: RNNs are
a class of neural network models specialized in han-
dling sequential data, capable of capturing temporal
dependencies between data, applicable in areas such as
natural language processing and time series prediction.

Residual Network (ResNet) [26]: ResNet is a type
of deep residual network structure that addresses the
problem of vanishing gradients in deep neural network
training by introducing residual blocks, exhibiting
good training stability and generalization performance.

EfficientNet [27]: EfficientNet is a type of neu-
ral network structure designed based on automated
network scaling methods, capable of achieving high
performance while maintaining relatively low model
complexity.

MobileNet [28]: MobileNet is a lightweight con-
volutional neural network structure designed specifi-
cally for efficient image recognition and classification
tasks on mobile devices with limited computational
resources.

E. Optimization

Accurate inference entails the system correctly pre-
dicting when a device is operating swiftly and refrain-
ing from taking corresponding actions (true negatives),
or predicting when a device is operating sluggishly
and implementing mitigating measures (true positives).
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Conversely, inaccuracies can manifest as (a) false
negatives: where the model perceives the device as fast
and consequently proceeds with normal I/O operations;
(b) false positives: where the model predicts the device
to be slow, yet the device is capable of fast service.

When utilizing predictive tools under low-latency
device conditions and undertaking actions for slower
devices, such as retracting I/O and resubmitting it to
redundant devices, the associated overhead becomes
non-negligible. Therefore, the impact of false positive
judgments far exceeds that of false negative judgments.
To mitigate false positive occurrences as much as
possible, we incorporate heuristic algorithms following
the model’s predictions. Upon predicting a device to
be slow, an additional heuristic judgment is invoked.

Within this heuristic judgment, the latency of the
most recent Rh (where Rh is less than R, default
Rh=R/4) I/O operations and the length of the waiting
queue upon completion are evaluated over time. If a
certain proportion of the Rh I/O operations marked
as fast points and there is a decreasing trend in the
length of the waiting queue, the model’s prediction
is modified to fast. In other cases, it will not change
the predicted results. Because when the queue length
decreases and the waiting time for each I/O becomes
shorter, it is likely that the SSD has recovered from a
slow state to a normal state (such as garbage collection
ending), and I/O can continue to be sent to this SSD
without being affected.

V. EVALUATION

In this section, we first describe our evaluation setup
(Section V-A) and then present the results that answer
the following important questions:

- Model accuracy (Section V-B): Which model is
more suitable for solving this classification task?

- Metrics (Section V-C): Discussion on Metric se-
lection

- Overhead (Section V-D): Has LatVision introduced
minor additional overhead?

- False Positive (Section V-E): How many false
positives are present in LatVision?

A. Setup

1) Workloads.: Our ultimate goal is to evaluate
whether LatVision can accurately predict the slow state
of devices. In daily scenarios, the probability of SSDs
being in a slow-running state is very low, possibly
less than 1%, so we need to ensure that the device’s
usage space exceeds 90% before collecting the training
dataset. When the remaining space on the device is

minimal, it is more likely to enter a slow-running state.
In summary, we need to collect data from devices
that are in a busy state for training; otherwise, it may
result in a scarcity of slow samples and low training
efficiency. Our workload is constructed using Fio and
Filebench, and tested with the default configuration of
file system read/write loads.

2) Device and Environments.: In our experiment,
we employed three widely adopted solid-state drives
(SSDs) for testing: the Samsung 980Pro SSD, Sam-
sung 970 EVO, and Western Digital SN770. Unless
otherwise specified, Samsung 980Pro SSD will be
used for testing in the experiment by default. These
selections were made to encompass diverse hardware
configurations and performance profiles, aiming to
comprehensively assess the generality and efficacy of
LatVision. Prior to this evaluation, all devices un-
derwent several months of utilization to ensure their
performance closely mimicked real-world conditions.

Concurrently, our experiments were conducted on
a machine running Ubuntu 22.04 operating system.
This machine featured a 2.6GHz 18-core (36-thread)
Intel i9-7980XE processor with 64GB of DRAM,
ensuring ample computational resources to support our
experimental requirements. Apart from the variables
mentioned in the comparative evaluation experiments,
all other environmental configurations were maintained
at their default settings to ensure the comparability and
accuracy of the experimental outcomes.

B. Model Accuracy

In order to select the appropriate model among
various options for completing the classification task,
we chose to experiment with classification models that
are currently considered mature (introduced in Section
IV-D). Additionally, we conducted two experiments.
On one hand, we made a simple extension to the
prediction model of LinnOS in the kernel, transitioning
it from predicting individual slow I/Os to predicting
consecutive slow I/Os. On the other hand, drawing
inspiration from the implementation pattern of neural
networks in LinnOS, we independently developed the
simplest form of a neural network, which we named
Light Neural Network (LNN). Based on LinnOS, we
expanded the input end of the neural network. To
predict the continuity of slow I/Os, our tool requires
more input information.

During the collection of training data, we collected
data from three SSDs respectively and automatically
labeled them, then unified the input format for training
all neural networks. In model training, we trained
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TABLE I
PREDICTION ACCURACY OF EACH MODEL.

Samsung 980 Pro Samsung 970 EVO Western Digital SN770
LinnOS 49.65% ± 1.03% 46.30% ± 0.10% 47.97% ± 0.08%

Light Neural Network 85.28% ± 0.68% 86.90% ± 0.66% 84.01% ± 0.80%
RNN 86.22% ± 1.12% 86.97% ± 0.59% 87.35% ± 0.82%

1D CNN 77.81% ± 0.07% 75.09% ± 0.38% 75.36% ± 0.60%
DNN 89.69% ± 1.02% 91.44% ± 1.19% 87.10% ± 1.87%

ResNet 94.10% ± 0.66% 93.87% ± 1.69% 93.27% ± 0.98%
MobileNet 93.05% ± 0.40% 93.74% ± 0.31% 93.39% ± 0.40%

EfficientNet 96.89% ± 0.59% 95.30% ± 0.94% 94.30% ± 0.61%

TABLE II
THE IMPACT OF INCREASING KEY METRICS ON PREDICTION ACCURACY.

Metrics Recent I/Os
Information (R=20)

Recent I/Os
Information (R=40)

+Remaining
disk space

+Number of active
related threads

Light Neural Network 76.31% 79.97% 83.01% 85.28%
RNN 73.98% 75.51% 82.03% 86.22%

1D CNN 65.66% 70.23% 75.50% 77.81%
DNN 85.21% 85.97% 88.76% 89.69%

ResNet 83.10% 83.32% 89.19% 94.10%
MobileNet 86.12% 89.30% 92.69% 93.05%

EfficientNet 92.86% 93.65% 95.06% 96.89%

separately for different SSDs. During testing, we also
conducted tests on three disks respectively, using Fio
and Filebench as the testing loads. Additionally, we
recorded the latency of each I/O for validation pur-
poses. We spend 60 minutes each time testing on each
model. We conducted 3 repeated tests on each model,
calculating the accuracy of the prediction models.

The accuracy results of testing each model are
shown in Table I. From the table, we can observe that
in terms of accuracy, EfficientNet exhibits significant
advantages compared to other models. Moreover, the
Light Neural Network (LNN) can surpass 1D CNN in
accuracy, and since LNN has a simpler structure, it is
also a preferable choice for predicting under resource-
constrained scenarios. On the other hand, it is evident
that the accuracy of model predictions is not strongly
correlated with the actual disk performance. To avoid
redundant results, all subsequent findings are based on
experimental data from the Samsung 980Pro SSD.

C. Metric

In order to accurately predict consecutive slow I/Os
in devices, selecting appropriate input metrics is cru-
cial. As mentioned in Section IV-C, the metrics we
discussed have the potential to improve the accuracy
of prediction models. The reason for gradually in-
creasing the input metrics during testing is that each

additional metric introduces additional overhead for
data transmission during real-time prediction. If a
metric does not significantly improve accuracy and its
transmission incurs more resource overhead, it will be
excluded from our model. However, if a metric can
significantly improve prediction accuracy, its selection
becomes a trade-off. We need to balance between
performance overhead and accuracy. After each new
metric is introduced, we conduct a complete process
of data collection, training, and testing.

The results of gradually increasing input metrics
and conducting model tests are shown in Table II.
The recent I/O information includes the following
components: the number of currently pending I/Os, the
latency of the R most recently completed I/Os, and
the number of pending I/Os at the time when each of
the R completed I/Os arrived. These three parameters
intricately describe the current state of the device and
its recent I/O operations.

We observed that when R=20, the EfficientNet
model achieved a prediction accuracy of 92.86%.
However, increasing R to 40 resulted in nearly a
2x increase in eBPF transmission resource overhead,
with no significant improvement in model prediction
accuracy. Therefore, simply increasing the value of R
is not an optimal choice for expanding metrics.

However, we attempted to incorporate metrics from
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Fig. 4. Additional overhead generated by each prediction model (tested by Filebench and Fio workloads).

a macroscopic perspective for prediction, including the
remaining disk space and the number of currently ac-
tive relevant processes. When incorporating remaining
disk space as a metric, the model’s prediction accuracy
significantly improved, reaching a maximum of 95.6%.
Furthermore, when continuing to include the number
of currently active relevant processes, the accuracy
increased to 96.89%. Both of these metrics can reflect
the current state of disk and system operation, closely
related to I/O execution latency, thus justifying the
improvement in prediction accuracy.

D. Overhead

When predicting slow I/O for low-latency devices,
attention must be paid to the overhead of the prediction
tool itself. Because if the overhead of the tool exceeds
the impact of slow I/O, or if the operation of the tool
affects the normal operation of the device, then such
a prediction tool becomes meaningless.

Our goal is to ensure high accuracy while min-
imizing overhead as much as possible. To evaluate
the additional overhead of LatVision, we designed the
following experimental setup. The additional overhead
introduced by LatVision is divided into two parts: one
part is the eBPF data transmission module. Although
the execution of eBPF hook functions does not affect
the normal operation of I/O, it still affects the environ-
ment load to some extent. The other part is the predic-
tion module of the model, which introduces additional
performance overhead during inference computation.
Generally, the more complex the model structure, the
greater the overhead. The training of the model is in-
dependent of LatVision’s operation and is not included
in the additional overhead.

During the testing process, we used Filebench and
Fio as the workload, with the performance results
without running LatVision as the baseline. Then, we
added the eBPF data collection module for testing.
eBPF data collection is independent of the model.
Finally, we tested each prediction model. It should be
noted that here "latency" refers to the latency in the
Fio results, which is the performance latency across
the entire I/O storage stack. Although this is somewhat
different from the slow I/O described in our device, it
does not affect our observation of the proportion of
performance degradation after adding latency.

We test overhead by both Filebench and Fio work-
loads, the results are shown in Fig.V-C. It demonstrates
that LNN exhibits the least additional overhead among
all models. This is attributed to its utilization of the
simplest neural network architecture, thereby show-
casing relatively higher efficiency in performance and
resource utilization. However, despite EfficientNet’s
commendable accuracy performance, its introduction
of a 37% additional overhead relative to the baseline
model is considered a notable drawback. In contrast,
MobileNet, as a lightweight model, while experiencing
some loss in accuracy, significantly outperforms Effi-
cientNet in terms of performance. After a thorough
comparison of the two components, we have decided
to employ MobileNet as the model for our prediction
tasks. This decision is based on MobileNet’s ability
to achieve high predictive accuracy while maintaining
relatively low computational overhead.

E. False Positive

When predicting performance for low-latency de-
vices, a single incorrect prediction can have significant
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consequences. Errors in prediction models can be cat-
egorized into two types: (a) false negatives, where the
model mistakenly believes the device is operating at
high speed when it is actually running slowly, and (b)
false positives, where the model predicts the device is
running slowly but it can actually provide fast service.

As we analyzed in Section IV-E, false positive
predictions can potentially introduce greater additional
overhead. Therefore, we applied heuristic optimization
on top of the prediction models. We tested both the
without-heuristic and with-heuristic models in these
two rounds of testing.

Fig.5 illustrates the comparative results of these
models in the two testing rounds. We can observe that
the heuristic algorithm has addressed most of the false
positive issues. Although the occurrence probability of
false positives in prediction models is not high, we can
still mitigate potential risks caused by false positives
using simple heuristic algorithms.

VI. CONCLUSION AND DISCUSSION

We have presented an eBPF-base SSD performance
prediction tool-LatVision. We have conducted a de-
tailed discussion and comparison of the models and
metrics used in the tool, and brought in-depth analysis
in terms of accuracy and overhead. We have shown
the feasibility of using a neural network for making
frequent, black-box live inferences for SSD perfor-
mance. Our work successfully brings predictability on
persisting tail latency in SSD. We also believe that
LatVision’s success leads to exciting discussions and
questions that can spur future work:

A. On Further Process

The predictive outcomes of LatVision hold signif-
icant potential for practical applications. Achieving

real-time, high-accuracy predictions of whether an
SSD is likely to enter a slow-running state enables
several key tasks:

Improved I/O allocation: In performance-sensitive
workloads where stringent requirements exist for I/O
latency, reallocating I/O operations becomes feasible.
By redirecting I/O originally destined for a slow-speed
disk to redundant disks, performance degradation can
be mitigated.

Enhanced disk management: On a macroscopic
level, prolonged periods of slow operation in a disk
indicate underlying performance-related issues. This
insight allows for targeted interventions and resolutions
based on the specific circumstances. Furthermore, in
the context of disk arrays, it presents an opportunity
for effective load balancing strategies.

Service Level Agreement (SLA) Management: For
cloud service providers with a large number of SSDs,
SSD I/O performance prediction can be used to ensure
service quality and dynamically adjust resources to
meet the performance needs of different customers

B. On Other Integrations and Extensions

Our research raises an intriguing question: how can
the block layer effectively learn the latency behavior
of SSDs, given their complex idiosyncrasies, with only
a few observable features? This understanding holds
the potential to inform the design and implementation
of various higher layers in storage systems, includ-
ing RAID configurations, direct device access (such
as SPDK [29]), user or device-level filesystems, and
distributed storage solutions. Furthermore, it opens av-
enues for future exploration, suggesting the possibility
of integrating latency inference capabilities directly
into SSDs at lower layers.

While one might argue that SSDs already possess
comprehensive internal knowledge and therefore do
not require black-box predictions, an alternative per-
spective emerges. SSD vendors could potentially lever-
age machine learning techniques consistently across
diverse internal architectures, obviating the need to
continually redevelop inference logic with each hard-
ware or policy modification. This approach offers a
streamlined method for adapting to changes in internal
hardware, logic, and policies. Additionally, SSD ven-
dors might consider employing a "gray-box" learning
approach, blending external observations with internal
knowledge to enhance prediction accuracy and robust-
ness.
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