
Bridging Operator Semantic Inconsistencies: A Source-Level

Cross-Framework Model Conversion Approach

XINGPEI LI, National University of Defense Technology, China

YAN LEI, Chongqing University, China

ZHOUYANG JIA, National University of Defense Technology, China

YUANLIANG ZHANG, National University of Defense Technology, China

HAORAN LIU, National University of Defense Technology, China

LIQIAN CHEN, National University of Defense Technology, China

WEI DONG, National University of Defense Technology, China

SHANSHAN LI∗, National University of Defense Technology, China

As deep learning (DL) frameworks become widely used, converting models between frameworks is crucial

for ecosystem flexibility. However, interestingly, existing model converters commonly focus on syntactic

operator API mapping—transpiling operator names and parameters—which results in API compatibility issues

(i.e., incompatible parameters, missing operators). These issues arise from semantic inconsistencies due to

differences in operator implementation, causing conversion failure or performance degradation.

In this paper, we present the first comprehensive study on operator semantic inconsistencies through

API mapping analysis and framework source code inspection, revealing that 47% of sampled operators

exhibit inconsistencies across DL frameworks, with source code limited to individual layers and no inter-

layer interactions. This suggests that layer-wise source code alignment is feasible. Based on this, we propose

ModelX, a source-level cross-framework conversion approach that extends operator APImapping by addressing

semantic inconsistencies beyond the API level. Experiments on PyTorch-to-Paddle conversion show that

ModelX successfully converts 624 out of 686 sampled operators and outperforms two state-of-the-art converters

and three popular large language models. Moreover, ModelX achieves minimal metric gaps (avg. all under

3.4%) across 52 models from vision, text, and audio tasks, indicating strong robustness.

CCS Concepts: • Software and its engineering→ Software maintenance tools.

Additional Key Words and Phrases: Model conversion, Deep learning library, Semantic compatibility

ACM Reference Format:

Xingpei Li, Yan Lei, Zhouyang Jia, Yuanliang Zhang, Haoran Liu, Liqian Chen, Wei Dong, and Shanshan

Li. 2025. Bridging Operator Semantic Inconsistencies: A Source-Level Cross-Framework Model Conversion

Approach. Proc. ACM Softw. Eng. 2, FSE, Article FSE091 (July 2025), 23 pages. https://doi.org/10.1145/3729361

∗Corresponding author

Authors’ Contact Information: Xingpei Li, College of Computer Science and Technology, National University of Defense

Technology, China, lixingpei123@nudt.edu.cn; Yan Lei, School of Big Data & Software Engineering, Chongqing University,

China, yanlei@cqu.edu.cn; Zhouyang Jia, College of Computer Science and Technology, National University of Defense

Technology, China, jiazhouyang@nudt.edu.cn; Yuanliang Zhang, College of Computer Science and Technology, National

University of Defense Technology, China, zhangyuanliang13@nudt.edu.cn; Haoran Liu, College of Computer Science

and Technology, National University of Defense Technology, China, liuhaoran14@nudt.edu.cn; Liqian Chen, State Key

Laboratory of Complex & Critical Software Environment, College of Computer Science and Technology, National University

of Defense Technology, China, lqchen@nudt.edu.cn; Wei Dong, College of Computer Science and Technology, National

University of Defense Technology, China, wdong@nudt.edu.cn; Shanshan Li, College of Computer Science and Technology,

National University of Defense Technology, China, shanshanli@nudt.edu.cn.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2994-970X/2025/7-ARTFSE091

https://doi.org/10.1145/3729361

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

FSE091:2 Xingpei Li, Yan Lei, Zhouyang Jia, Yuanliang Zhang, Haoran Liu, Liqian Chen, Wei Dong, and Shanshan Li

1 Introduction

As deep learning (DL) research progresses rapidly, DL frameworks [1, 7, 25, 28, 38, 47] have
become critical tools in both academic and industrial fields, offering robust support for training,
evaluating, and deploying complex models [6, 36, 37, 39, 58, 64]. With the widespread adoption of
these frameworks, the demand for cross-framework model conversion has increased, as it enables
efficient model reuse across different platforms [12]. This makes high-quality model converters
essential for ensuring the compatibility and performance of models in the DL ecosystem [27, 44].
Previous studies [26, 27, 44] have investigated model conversion errors, revealing that 74% of

these errors stem from failures in operator conversion. A primary contributor to these failures is API
compatibility issues [26]. The main root cause of these issues is operator semantic inconsistencies
arising from operator implementation across frameworks, which significantly impact operator
behavior, potentially causing converted model execution failure or performance degradation.
Figure 1 illustrates an example of operator semantic inconsistencies between PyTorch [47] (left sub-
figure) and Paddle [38] (right sub-figure) in MaxPool2d. Both frameworks use kernel_size to define
the pooling window and padding for input padding, but PyTorch additionally supports dilation1,
which expands the effective pooling window by increasing the spacing between kernel elements
(Lines 2-7). This effectively enlarges the receptive field and unexpectedly reduces the output size.
For instance, given an 8×8 input with kernel_size=3, stride=2, and dilation=2, PyTorch computes an
effective kernel size of 5× 5, producing a 4× 4 output, whereas Paddle, which lacks dilation support
(Lines 2-5), applies a 3 × 3 kernel and outputs 3 × 3. This operator semantic inconsistency directly
causes converted model execution failures through the change in output size. Even if conversion
succeeds (i.e., the converted model runs without syntax errors or crashes), the altered receptive
field due to missing dilation support degrades feature extraction capability [23, 35, 51, 53]. Thus,
bridging operator semantic inconsistencies is essential for reliable cross-framework conversion.

However, current model converters [4, 9, 20, 24, 30, 34, 41] primarily focus on the source-to-source
APImapping process, which involves transpiling the operator name and parameters via computation
graphs [24, 34, 41] or unified operator APIs [4, 9, 20, 30] as intermediate representations (IRs) across
different frameworks. While these approaches effectively align the syntax of API calls (i.e., renaming
functions and parameters and reordering or combining parameters to match across frameworks),
they have limitations in bridging semantic inconsistencies. This is because IRs, compared to source
code, do not capture the fine-grained execution details of operators.
In this paper, we propose ModelX, a source-level model conversion approach that builds on

current model converters [4, 9, 20, 24, 30, 34, 41] and extends them with a finer-grained strategy to
bridge operator semantic inconsistencies directly at the source code level, going beyond traditional
API-level mapping. The insight is that by modifying framework source code, we can bridge operator
semantic inconsistencies during the operator mapping process. To achieve this goal, we have to
solve the following challenges:

(1) How to extract framework source code from the source framework and locate modification points in
the target framework? Extracting relevant framework source code from the source framework
is essential to determine the part causing inconsistencies, while locating modifications in the
target framework determines what needs to be modified. However, the dynamic scheduling
mechanism introduces numerous function calls, making it difficult to trace kernel functions and
extract specific code snippets, causing inconsistencies. Moreover, the framework source code in
the source framework may not match the code structure in the target framework, making direct
modification points unclear.

1Dilation: this introduces gaps in coverage of the filter in pooling layers, allowing it to sample over a wider area of the

input without enlarging the filter size.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

Bridging Operator Semantic Inconsistencies: A Source-Level Cross-Framework Model Conversion Approach FSE091:3

torch.nn.MaxPool2d(kernel_size, ..., padding, dilation, ...) paddle.nn.MaxPool2D(kernel_size, ..., padding, ...)

class MaxPool2d(...):
def forward(self, ...):

...
return F.max_pool2d(..., padding, dilation , ...)

class MaxPool2D(...):
def forward(self, ...):

...
return F.max_pool2d(..., padding, ...)

1. void cpu_max_pool(..., int dilationW, int dilationH){
...
2. ih1 = std::min(ih0 + (kH-1)* dilationH + 1,input_height);
3. iw1 = std::min(iw0 + (kW-1)*dilationW + 1,input_width);
4. while(iho<0){ iho += dilationH; }
5. while(iw0<0){ iw0 += dilationW; }
...
6. for(int64tih=ihe; ih<ih1; ih += dilationH) {
7. for(int64tiw=iw0; iw<iw1; iw += dilationW) {
8. int64 t index=ih*input_width + iw;
9. scalar_t val = input ptr[index];
10. if((val>maxval)std::isnan(val)){
11. maxval = val;
12. maxindex= index;
13. }}}
...

1. void Pool2dFunctor<...>::operator()(...) {
...
2. hend = std::min(hstart + ksize_height, input_height);
3. wend = std::min(wstart + ksize_width, input_width);
4. wstart = std::max(wstart, 0);
5. hstart = std::max(wstart, 0);
...
6. for (int h = hstart; h < hend; ++h) {
7. for (int h = hstart; h < hend; ++h) {
8. pool_process.compute(input_data[h

* input_width + w], &ele);
9. }}
...

Operator API

Operator
Source Code

Implementation

ATen\native\...\MaxPoolKernel.cc

modules\pooling.py

Kernel\funcs\Pooling.cc

layer\pooling.py

Fig. 1. An example of how operator semantic inconsistency impacts operator behavior (i.e., MaxPool2d) from

the ground up.

(2) How to align framework source code across different layers within the target framework? Aligning
framework source code effectively bridges operator semantic inconsistencies, but code snippets
are distributed across multiple layers within the framework, making it unclear whether alignment
should be done independently at each layer or globally, requiring inter-layer dependency analysis.

To address the above challenges, we conduct the first empirical study on operator semantic
inconsistencies between PyTorch [47] and Paddle [38]. Specifically, we manually analyze the source-
to-source operator API mapping to identify operator semantic inconsistencies (see Section 3.1.1)
and extract relevant framework source code by tracing kernel functions in the source framework
and comparing similar code regions in the target framework (see Section 3.1.2). These two steps
are undertaken to construct a comprehensive operator mapping table that stores the mapping
relationships, including compatible and incompatible operators (see Section 3.1.3). Finally, we
provide findings into operator semantic inconsistencies and framework source code characteristics.
Our study qualitatively analyzes 1,349 operators from two popular frameworks (i.e., PyTorch [47]
and Paddle [38]), categorizing operator API mappings into three categories: consistent API,
inconsistent API, and no API pair. We find that 47% of operator API mappings have semantic
inconsistencies (i.e., corresponding to the categories of inconsistent API and no API pair).
Moreover, the relevant framework source code is independently distributed across multiple layers
within DL frameworks, and there is no inter-layer dependency across different layers. These
findings reveal that operator semantic inconsistencies are widespread during cross-framework
model conversion and can be bridged effectively by aligning relevant code snippets layer by layer.
Based on these findings, ModelX first parses the input source framework model to extract

source framework operators. API mapping is performed for each operator using the operator
mapping table from Section 3.1.3. To bridge operator semantic inconsistencies, ModelX employs
an on-demand layered alignment approach that modifies framework code snippets only when
incompatible parameters occur and an approximate expression synthesis approach that builds
missing operators based on the function call stack.

We evaluate our experiments on PyTorch [47] and Paddle [38] due to their widespread adoption
in academic research and industrial applications [31, 61]. Specifically, we test the conversion of 686

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

FSE091:4 Xingpei Li, Yan Lei, Zhouyang Jia, Yuanliang Zhang, Haoran Liu, Liqian Chen, Wei Dong, and Shanshan Li

sampled operators from PyTorch to Paddle, achieving a 91% conversion success rate, demonstrating
strong equivalence with low maximum absolute error (MAE) and root mean squared error (RMSE).
Moreover, compared with two state-of-the-art (SOTA) model converters [4, 41] and three popular
large language models (LLMs) (i.e., ChatGPT-3.5, ChatGPT-4o, DeepSeek-Coder), ModelX not
only improves model performance by an average of 2% across 18 vision inference models but
also maintains efficient evaluation latency and throughput with minimal overhead, comparable
to IR-level converters. For robustness, we conduct tests involving 52 models from three common
application fields, whose results indicate very minimal average metric gaps between frameworks,
all under 3.4%. The results suggest that ModelX is highly robust, effectively bridging a wide range
of operator semantic inconsistencies with consistent reliability and applying broadly across various
application fields.

In conclusion, the primary contributions of this paper are systematically enumerated as follows:

• We conduct an empirical study on analyzing operator semantic inconsistencies between two DL
frameworks, and we summarize three categories of semantic inconsistencies and describe their
relevant framework source code characteristics.

• We devise and implement ModelX, a source-level cross-framework model conversion approach
that builds upon previous converters by extending API mapping to bridge operator semantic
inconsistencies at the source code level, going beyond simple API-level mapping, thus improving
reliability and compatibility of cross-framework model conversion.

• We evaluateModelX on PyTorch and Paddle, achieving a 91% success rate of 686 sampled operators
and outperforming two SOTA model conversion approaches and three LLMs by supporting more
models and improving model performance. Robustness tests across 52 models showed minimal
performance gaps, further confirming the robustness of ModelX.

2 Background

In this section, we give some background on DL model converters with their associated problems
(i.e., model conversion errors) and the multi-layer structure of DL libraries.

2.1 DL Model Converters

DL model converters are crucial for ensuring interoperability across different DL frameworks.
Jajal et al [26] found that 52% of developers rely on conversion tools for framework compatibil-
ity [15, 26, 34]. These tools act as source-to-source transpilers, enabling model conversion between
frameworks such as PyTorch [47], Paddle [38], and TensorFlow [1]. Beyond interoperability, cross-
framework conversion enhances efficiency and supports the development of new DL frameworks.
The conversion approaches typically employ either high-level intermediate representations (IR) for
standardization and optimization or direct operator API mappings for model conversion:

Computation Graphs-Based Model Conversion. This conversion category [24, 34, 41] maps
DL model layers and operations into a computation graph, which is an IR structured as a directed
acyclic graph (DAG) [33, 56]. While capturing dependencies and data flows, IR-level converters may
modify operators due to framework-specific exporters and importers (e.g., ONNX uses torch.onnx
and X2Paddle for PyTorch-to-Paddle conversion), which often introduce approximations or simpli-
fications. These conversions frequently face compatibility issues due to inconsistencies in operator
semantics and definitions across frameworks [18, 26].

Operator APIs-Based Model Conversion. This conversion category [4, 9, 20, 30] reconstructs
models by directly mapping each operator in models to the corresponding operator APIs in the
target framework. Unlike computation graph-based model conversion, this approach works at
the operator level without relying on an IR. While simplifying the conversion process, it shares

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

Bridging Operator Semantic Inconsistencies: A Source-Level Cross-Framework Model Conversion Approach FSE091:5

Fig. 2. Multi-layer structure of the DL library

compatibility challenges with computation graphs-based model conversion approaches, such as
mismatches in operator definitions and parameterizations across frameworks.

2.2 Model Conversion Errors

Researchers have characterized model conversion errors [15, 18, 26, 44, 52]. Typically, these errors
are classified into two main categories: Crash andWrong Model (i.e., inconsistent behavior) [15, 26].
Shen et al [52] and Jajal et al [26] further identified that the majority of these errors occur during the
operator conversion process, with their analysis indicating that operator compatibility issues are the
primary cause. This highlights the inherent challenges of conversion, as it involvesmapping between
graphs expressed with different operators and semantics [18, 40, 41]. These API compatibility issues
between frameworks emphasize the need for effective solutions and underscore the importance of
improving operator compatibility in cross-framework model conversions.

2.3 Multi-Layer Structure of DL Libraries

As illustrated in Figure 2, DL libraries—key components of DL frameworks [59, 62]—are structured
into three layers: a high-level API for model construction, a Python layer for operator and tensor
management, and a C layer for low-level execution [59]. This hierarchical architecture poses
significant challenges for addressing operator semantic inconsistencies, as resolving such issues
demands cross-layer code analysis and modification. Consequently, it exacerbates the difficulty of
achieving reliable cross-framework model conversion.

3 Empirical Study of Operator Semantic Inconsistency

Our empirical study focuses on operator semantic inconsistencies across different DL frameworks
and is dedicated to answering the following two research questions (RQs).

Table 1. Distribution of operators sampling in PyTorch and Paddle

Framework Company Stars Version Tensor Ops1 Layer Ops2 Other Funs3 Total

PyTorch Meta 81.8k 2.0.1 278 190 218 686
Paddle Baidu 22.0k 2.5.2.post117 269 171 223 663

1Tensor operations (e.g., add, full); 2Network layers (e.g., Conv, Loss);
3Auxiliary tasks (e.g., data preprocessing, device management, data loading).

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

FSE091:6 Xingpei Li, Yan Lei, Zhouyang Jia, Yuanliang Zhang, Haoran Liu, Liqian Chen, Wei Dong, and Shanshan Li

Opset Traversing API Pair Identification API Pair Analysis

Operator Name Matching

Operator Functionality Analysis

torch.nn.MaxPool2d(…)
paddle.nn.MaxPool2D(…)

torch.nn.MaxPool2d(…)

paddle.nn.MaxPool2D(…)

Functionality: Applies a 2D max pooling
over an input signal composed of
several input planes…

Functionality: This operation applies 2D
max pooling over input feature...

No API Pair

Consistent
API

Inconsistent
API

torch.nn.MaxPool2d (kernel_size, ... ,
padding, dilation,
…)

paddle.nn.MaxPool2D (kernel_size, ... ,
padding, …)

torch.nn.MaxPool2d (kernel_size, ... ,
padding, dilation,
…)

No Paired Paddle Operator API

Fig. 3. Operator API mapping analysis

• RQ1: What kinds of semantic inconsistencies might exist among operators, and to what extent
do they affect operator semantics?

• RQ2: What are the characteristics of framework source code related to operator semantic
inconsistencies during the operator conversion process?

To answer the above RQs, we collect and analyze semantic inconsistencies in 1,349 sampled
operators from two popular DL frameworks (i.e., PyTorch [47] and Paddle [38]). Our selection
is based on operators frequently used in real-world models. We analyze 174 model types (i.e.,
categories like ResNet or VGG, not specific instances like resnet50 or vgg16) across six key fields
in the official PyTorch repository [10] (i.e., audio, time series, text, vision, recommendation, and
reinforcement learning), identifying 271 high-frequency operators (i.e., those appearing more than
twice). Based on both frequency and functional similarity, we sample 686 PyTorch operators. Using
the same criteria, we sample 663 Paddle operators from the official Paddle repository [46], ensuring
representative and diverse operator selection across frameworks. Table 1 shows the distribution.

In this empirical study, we first identify operator semantic inconsistencies during the APImapping
process (see Section 3.1), then provide findings to support the above RQs by analyzing identified
semantic inconsistencies (see Section 3.2).

3.1 Operator Semantic Inconsistencies Identification

Our approach follows three key steps: First, we manually analyze the source-to-source operator
API mapping to collect the operator API mapping relationship and classify mapping categories
(see Section 3.1.1). Next, we extract framework source code of inconsistent mapping categories
(see Section 3.1.2). Finally, we construct an operator mapping table that stores the operator API
mapping relationship and framework source code related to operator semantic inconsistencies (see
Section 3.1.3).

3.1.1 Operator API Mapping from Different Frameworks. We analyze operator API mappings
between frameworks and assess the semantic consistency of paired operators. As shown in Figure 3,
we first search for equivalent operators to form API pairs (i.e., equivalent operators from different
frameworks that allow one API to replace another, referring to them as source_API and target_API,
respectively) in PyTorch[47] and Paddle [38] by traversing their opsets. Using the Python ast
module, we parse these APIs into abstract syntax trees (ASTs) to extract operator names, positional
parameters, and keyword parameters.We then determine valid API pairs and evaluate their semantic
consistency by comparing name and parameter mappings (i.e., name, type, and order). These
mappings are established once and can be incrementally updated for new operators.

• API Pair Identification. We identify potential pairs for each operator API in both frameworks
based on name similarity and functionality. We first use string-matching algorithms [2, 22] to

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

Bridging Operator Semantic Inconsistencies: A Source-Level Cross-Framework Model Conversion Approach FSE091:7

identify potential API pairs based on name similarity. Afterward, we manually verify its function-
ality by reviewing the official API documentation [45, 49]. An API pair is considered valid if it
meets the following criteria: 1) the operators perform similar functions in both frameworks, 2) the
input/output types match, and 3) the computational behavior and parameters align functionally. If
any of these criteria are not met, the pair is considered invalid, and further analysis or alternative
pairings are explored. If no valid pair is found, we conclude there is no valid API pair.

• API Pair Analysis.We analyze API compatibility to determine whether the API semantics are
consistent. Once an API pair is identified, we extract operator names, positional parameters,
and keyword parameters using the Python ast module, then establish the mapping relationships
by establishing name mapping and parameter mappings. Name mapping is directly obtained
by pairing operators with the same or equivalent names. For parameter mappings, we match
parameters by name, analyze function descriptions, and manually check if any parameters in the
APIs cannot be directly matched or mapped through combinations and reordering. If parameters
remain incompatible (e.g., dilation in torch.nn.MaxPool2d is missing in Paddle), it indicates an
API semantic inconsistency. Otherwise, the API semantics are considered consistent.

Based on this analysis, we categorize the mappings into three categories: (1) Valid API pair with
consistent API semantics (i.e., consistent API); (2) Valid API pair with inconsistent API semantics
(i.e., inconsistent API); (3) No valid API pair (i.e., no API pair). The second and third categories
fall under inconsistent mapping. In the following subsection, we will further track framework source
code related to operator semantic inconsistencies for the second and third categories.

3.1.2 Framework Source Code Extraction Associated with Inconsistent Mapping. We analyze frame-
work source code and extract relevant code snippets. Algorithm 1 takes two inputs: Category
(inconsistent mapping categories: inconsistent API and no API pair) and APIPair, and outputs
FrameworkCode containing the relevant framework code snippets (Line 1).

For no API pair (Lines 2-8), the algorithm traces the function call stack in either the Python or
C implementation of source_API (Line 3), typically in C. It filters out irrelevant allocation functions
based on keywords (e.g., dispatch, route) (Line 6) and extracts function names and code snippets
(Line 7). Non-dispatch functions are added to FrameworkCode (Line 8). For example, torch.addcdiv
is traced to its kernel function addcdiv_cpu_kernel for reconstruction in the target framework.

For inconsistentAPI (Lines 9-19), the algorithm identifies incompatible parameters in source_API
(Line 10) and traces relevant Python functions and framework source code in both source_API and
target_API using Python Debugger (PDB) [48] (Lines 12-13). For source_API, it tracks code lines
where parameters appear. For target_API, it extracts relevant functions (typically in init or forward)
and their full framework source code, using a tree isomorphism algorithm [21] to locate similar
code lines as modification points. If the parameter flows into the C backend (Lines 15-16), the
algorithm traces the kernel function and collects the full C framework source code using GDB [19]
(Lines 17-18). Finally, all framework source code related to operator semantic inconsistencies is
recorded (Lines 14, 19). For example, Table 2 shows how the algorithm maps the incompatible
parameter dilation in torch.nn.MaxPool2d to the modification point in paddle.nn.MaxPool2D.

3.1.3 Operator Mapping Table Construction. To support the above RQs and guide the source-level
model conversion approach design, we organize a mapping table that includes operator API relation-
ships from Section 3.1.1 and relevant framework source code related to semantic inconsistencies
in API mappings from Section 3.1.2. Table 2 provides a detailed description. For instance, the
mapping table shows torch.nn.MaxPool2d, which from PyTorch is mapped to paddle.nn.MaxPool2D
in PaddlePaddle, illustrating the category of inconsistent API. The parameter mapping includes
matched parameters such as return_indices to return_mask. The variant code records the details of

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

FSE091:8 Xingpei Li, Yan Lei, Zhouyang Jia, Yuanliang Zhang, Haoran Liu, Liqian Chen, Wei Dong, and Shanshan Li

Algorithm 1: An analysis and tracking algorithm for framework source code related to
operator semantic inconsistencies

Input: Category: Operator mapping category; APIPair: API pair involved in the mapping;
Output: FrameworkCode: Relevant framework source code snippets;

1 frameworkCode ← [];

2 if Category = no API pair then

3 functionCallStack ← trace_source_API_function_call_stack(APIPair);

4 for function in 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑎𝑙𝑙𝑆𝑡𝑎𝑐𝑘 do

5 functionName ← extract_function_name(𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛);

6 if filter_dispatch_functions(functionName) = False then

7 functionCode ← extract_function_code(𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛);

8 frameworkCode ← frameworkCode ∪ {𝑛𝑢𝑙𝑙 , functionCode};

9 if Category = inconsistent API then

10 incompatibleParams ← identify_incompatible_parameters(APIPair);

11 for 𝑝𝑎𝑟𝑎𝑚 ∈ 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒𝑃𝑎𝑟𝑎𝑚𝑠 do

12 PythonImpactFunctions ← trace_python_parameter_usage(𝑝𝑎𝑟𝑎𝑚);

13 PythonCodes ← capture_python_impact(𝑝𝑎𝑟𝑎𝑚, PythonImpactFunctions);

14 frameworkCode ← frameworkCode ∪ {param, PythonCodes};

15 backendFlow ← trace_parameter_flow_to_backend(𝑝𝑎𝑟𝑎𝑚, PythonImpactFunctions);

16 if 𝑏𝑎𝑐𝑘𝑒𝑛𝑑𝐹𝑙𝑜𝑤 exists then

17 CImpactFunctions ← trace_source_API_parameter_usage(𝑝𝑎𝑟𝑎𝑚,𝑏𝑎𝑐𝑘𝑒𝑛𝑑𝐹𝑙𝑜𝑤);

18 CCodes ← capture_C_parameter_impact(𝑝𝑎𝑟𝑎𝑚,CImpactFunctions);

19 frameworkCode ← frameworkCode ∪ {param, CCodes};

the framework source code necessary for bridging operator semantic inconsistencies. Specifically,
this entry introduces dilation as an incompatible API parameter. It specifies that the corresponding
source code is located within the C layer of DL frameworks and includes the necessary code context.
Furthermore, it provides detailed code lines and modification points needed for alignment, such

Table 2. Operator mapping table definition

Entries Description Example

Operator Name Associated source framework operator API name torch.nn.MaxPool2d

Mapping Category Category of operator API mapping inconsistent API

Name Mapping Operator API name mapping relationship torch.nn.MaxPool2d→paddle.nn.MaxPool2D

Parameter Mapping Operator API parameter mapping relationship return_indices→return_mask, ...

Variant Code Framework source code related to API incompatibility

– Param Incompatible API parameter dilation

– Level Specific Framework Layer for code snippet C

– Context Environment & dependencies for code snippet1 "headers": "#include xxx" ... , ...

– Content Code lines and modification points for code snippet
"point": "hend = std::min(hstart + ksize_height, ..."

"line": "ih1 = std::min(ih0 + (kH-1) * dilationH + 1, ..."

1 VariantCode Context: Details of associated header files, namespaces, dependent sub-functions, and the source code of the corre-

sponding functions.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

Bridging Operator Semantic Inconsistencies: A Source-Level Cross-Framework Model Conversion Approach FSE091:9

as “ih1 = std::min(ih0 + (kH-1) * dilationH + 1, ...” and “hend = std::min(hstart + ksize_height, ...;”.
Notably, when missing target framework operators, the modification point is set to null.

3.2 Findings of Empirical Study

To answer RQ1, we categorize operator semantic inconsistencies based on categories of operators
API mapping (i.e., each sampled operator corresponds to one operator API mapping). We find
that (1) 637 out of 1,349 operator mappings have operator semantic inconsistencies between DL
frameworks; (2) Only 149 operator mappings lack a valid API pair in the target framework. In
addition, we summarize three main categories of operator semantic inconsistencies, each illustrated
in Figure 4 and Figure 5 and described below:

• Operator Syntax Inconsistency (712, 53%). These inconsistencies solely affect operator syntax
(i.e., operator API), neither involving framework source code nor altering operator semantics.
They manifest as differences in function paths, parameter definitions, or usage patterns across
frameworks. They can be categorized into two main types: function signature inconsistencies,
which involve differences in paths (i.e., module or namespace like torch.nn and paddle.nn), param-
eters, names, and return types across frameworks, accounting for 51%; and usage inconsistencies,
where operators are combined differently within a model, requiring graph-level modifications,
such as changing the order of operators. As shown in Figure 4, function signature inconsistencies
are highlighted by inconsistencies in both function names and parameter labels (e.g., torch.cat
versus paddle.concat, dim versus axis). Moreover, usage inconsistencies arise as PyTorch applies
the scheduler after the optimizer, whereas Paddle sets it up before.

• Operator Semantic Inconsistency (488, 36%). These inconsistencies arise from different im-
plementations of operators that should behave the same, resulting in conflicting results even

1 # Syntax Inconsistency in Signature

2 torch. cat (tensor1 , dim=0)

3 torch.from_dlpack (...)

4

5 # Syntax Inconsistency in Usage

6 import torch.optim as optim

7 import torch ,optim.lr_scheduler as lr

8 Optimizer =optim.Adam (...)

9 Scheduler =lr.StepLR(Optimizer , ...)

1 # Syntax Inconsistencies in Signature

2 paddle.concat(tensor1 , axis=0)

3 paddle.utils.dlpack.from_dlpack (...)

4

5 # Syntax Inconsistency in Usage

6 import paddle.optimizer as optimizer

7 import paddle.optimizer.lr as lr

8 Scheduler =lr.StepDecay (...)

9 Optimizer =optimizer.Adam(Scheduler , ...)

Fig. 4. Examples of operator syntax inconsistency: PyTorch (left-listing) and Paddle (right-listing). Note the

red highlighted code of instances.

1 // Semantic Inconsistency

2 torch.divide(a, b, rounding_mode=Trunc)

3

4 void div_trunc_kernel(auto& iter) {

5 ...

6 cpu_kernel_vec(iter ,

7 [](scalar_t a, scalar_t b){

8 return std::trunc (a / b);},

9 [](...){

10 return (a / b) .trunc() ;});

11 });}

1 // Semantic Inconsistency

2 paddle.divide(a, b)

3

4 struct DivideFunctor{

5 ...

6 inline HOSTDEVICE T operator ()(const T a

, const T b) const{

7 return a / b;

8 }

9 ...

10 };

Fig. 5. Examples of operator semantic inconsistency: PyTorch (left-listing) and Paddle (right-listing). Note

the red highlighted code of the instance.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

FSE091:10 Xingpei Li, Yan Lei, Zhouyang Jia, Yuanliang Zhang, Haoran Liu, Liqian Chen, Wei Dong, and Shanshan Li

when their APIs are similar. They are further categorized by underlying library layers of the
DL framework: 4% occur in the Python layer, mainly involving parameter initialization and
error handling, while 32% are in the C layer, with 7% related to tensor representation and 25% to
computational logic. Notably, the Python and C layers (handling defaults/error management and
tensor computation, respectively) are architecturally decoupled with no inter-layer dependencies.
This resolves semantic inconsistencies through layer-specific code alignment without cross-layer
coordination. As shown in Figure 5, torch.divide supports a rounding_mode parameter to control
rounding, such as trunc, floor, while paddle.divide lacks this option, highlighting inconsistencies
in operator semantics between the frameworks.

• Operator Missing (149, 11%). These inconsistencies arise when the corresponding operator
is absent in the target framework, such as torch.addcdiv in PyTorch. We can partially achieve
functional equivalence to bridge these gaps by combining existing target framework operators
with arithmetic operations.

○ Finding 1: Bridging operator semantic inconsistencies is crucial, as 47% of inconsistencies
alter operator semantics between frameworks. Moreover, alignment strategies depend on whether
the target framework operator exists. Existing operators can be aligned directly, whereas missing
ones require finding an equivalent.

To answer RQ2, we further analyze the “variant code” entry in Table 2, identifying relevant
framework source code characteristics and their impact on operator semantics. The analysis
targets two primary layers of the DL libraries: the Python layer, which handles defaults and error
management, and the C layer, responsible for tensor representation and computation. Additionally,
we examine inter-layer dependencies to assess if inconsistencies in one layer affect another, guiding
strategies to bridge semantic inconsistencies across layers without causing inter-layer impacts.

○ Finding 2: Operator semantic inconsistencies are not confined to a single layer of DL libraries.
Framework source code related to semantic inconsistencies is distributed across different layers
without inter-dependencies between layers, making it feasible to resolve them layer by layer
during cross-framework model conversion.

Our study highlights two important findings. Firstly, 47% of inconsistencies stem from operator se-
mantics within DL libraries, underscoring the need to address these for successful cross-framework
model conversion. Secondly, code snippets related to these semantic inconsistencies are spread
across various layers of DL libraries. Crucially, there are no inter-dependencies among these
snippets, enabling a layer-by-layer resolution of inconsistencies during the conversion process.

4 Design

In this section, we describe the design of ModelX, a source-level cross-framework model conver-
sion approach that effectively bridges operator semantic inconsistencies in Section 3. ModelX is
source-level (analyzing the specific implementation of each operator), layer-sensitive (considering
framework source code that is distributed across the multi-layer structure of DL libraries), and
designed for cross-framework model conversion. By using this approach, researchers and develop-
ers can effectively map operator APIs and address operator semantic inconsistencies during the
mapping process across DL frameworks.
Figure 6 shows the overview of ModelX, which takes the source model code and the operator

mapping table (which is described in Section 3.1.3) as inputs and outputs the target model code.
Building on PaConvert [4] and the ONNX exporter in PyTorch [11], ModelX parses the source
model code into an abstract syntax tree (AST), extracts source framework operators, and analyzes

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

Bridging Operator Semantic Inconsistencies: A Source-Level Cross-Framework Model Conversion Approach FSE091:11

Source Model
Code

Operator
Mapping Table
(Section 3.1.3)

Target Model
Code

Source Framwork
Operator Extraction and

Analysis (Section 4.1)

Operators Categorization

Source Framework
Operator Set Os

consistent API
Direct Operator API Mapping

On-Demand Layered Alignment
(Section 4.2)

Partial Operator API Mapping

Python Underlying Lib Alignment

C Underlying Lib Alignment

inconsistent API

Operator Building (Section 4.3)
no API pair

Fig. 6. Overview of ModelX

framework-specific nodes to extract operator context in the AST (𝐶𝐶) (see Section 4.1). We abstract
the cross-framework mapping of each operator as a function 𝑓 : 𝑂𝑠 → 𝑂𝑡 , mapping operators
from the source framework operator set𝑂𝑠 to the target framework operator set𝑂𝑡 . Then, for each
𝑜𝑠 , we find the corresponding entries from the operator mapping table associated with 𝑜𝑠 (Δ) to
determine the mapping category, dividing them into three cases:

𝑓 (𝑜𝑠 , 𝑜𝑡 ,𝐶𝐶,Δ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑1

𝑖=1 ℎ𝑖 (𝑜𝑠 , 𝑜𝑡 ,𝐶𝐶,Δ) if consistent API∑𝐿
𝑖=1 ℎ𝑖 (𝑜𝑠 , 𝑜𝑡 ,𝐶𝐶,Δ) if inconsistent API

operator_building(𝑜𝑠 ,𝐶𝐶,Δ) if no API pair

If the mapping category is consistent API, ModelX directly maps the operator API to the
target framework using the API mapping relationship from Δ, ensuring consistency with existing
works [4, 30, 41]. If the mapping category is inconsistent API, 𝑓 applies an on-demand layered
alignment, where ℎ𝑖 handles parameter mappings across different layers. Compatible parameter
mappings can be directly completed using Δ, while the remaining incompatible parameters require
modifying relevant framework code snippets across different 𝐿 layers of the target DL framework
(see Section 4.2). If the mapping category is noAPI pair, 𝑓 performs operator building, constructing
the missing operator by analyzing the function call stack and generating an approximate expression
(see Section 4.3). Finally, ModelX completes cross-framework conversion by updating 𝐶𝐶 .

4.1 Source Framework Operator Extraction and Analysis

Operator extraction parses the source model into an AST and identifies framework-specific nodes
representing 𝑂𝑠 . This involves traversing the AST from the root, focusing on nodes like ast.Call
and ast.Attribute, to extract each operator and its context for cross-framework mapping.

• Operator Extraction. Operator extraction begins by traversing each node in the AST and
checking the node’s name against predefined keywords, typically the root module names of
DL frameworks (e.g., torch, torchvision, paddle, tensorflow), which are derived from the official
API documentation [16, 45, 49]. If the node’s name matches any of these keywords, the node is
identified as a framework-specific node. Finally, all identified nodes together from 𝑂𝑠 .

• OperatorContextAnalysis. Operator context analysis extracts key attributes of each framework-
specific node to identify each source framework operator and its context. Specifically, it retrieves
the operator context 𝐶𝐶 from the source model AST. 𝐶𝐶 includes input/output shape and type,
tensor type, parameters, values, parent-child relationships, and node position. Additionally, it
locates Δ related to the operator in the operator mapping table, as shown in Table 2.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

FSE091:12 Xingpei Li, Yan Lei, Zhouyang Jia, Yuanliang Zhang, Haoran Liu, Liqian Chen, Wei Dong, and Shanshan Li

4.2 On-Demand Layered Alignment

We employ an on-demand layered alignment algorithm to map the operator name and parameters,
and bridge incompatible API parameters, as shown in Algorithm 2. The algorithm traverses the
alignment-oriented operators collected by node analysis and repeats the following process for each
operator:

1) Get API mapping relationship and variant codes from the operator mapping table (Line 1).
2) Parse operator API in the source framework model to separate name, positional parameters,

and keyword parameters (Line 2).
3) Map API name and parameters by API name mapping and API param mappings (Lines 3-4).
4) If args and kwargs from step 2 include incompatible API parameters (i.e., variant_code.Param),

align variant code to bridge these inconsistencies. (Lines 5-13).
– Locate and align framework source code in 𝑂𝑡 (Line 9).
– Pack and import aligned Python code or dynamically compile and link aligned C code
(Lines 10-13).

5) Generate the aligned operator and update the source model AST. (Lines 14-15).

As shown in the function 𝑔, Algorithm 2 is divided into three components (𝐿 = 3) based on the
multi-layer structure of DL libraries. These components are associated with specific functions: ℎ𝐴𝑃𝐼
for operator API mapping, ℎ𝑃𝑦𝑡ℎ𝑜𝑛𝐿𝑎𝑦𝑒𝑟 for Python framework source code alignment, and ℎ𝐶𝐿𝑎𝑦𝑒𝑟
for C framework source code alignment. These functions are described as follows:

𝐿∑
𝑖=1

ℎ𝑖 (𝑜𝑠 , 𝑜𝑡 ,𝐶𝐶,Δ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ℎAPI (𝑜𝑠 ,𝐶𝐶,Δ) = 𝑓 (𝑜𝑠 ,𝐶𝐶,Δ)

ℎPythonLayer (𝑜𝑡 ,𝐶𝐶,Δ) = 𝜎 (𝐶𝐶, 𝜏 (𝑂𝑡 ,Δ))

ℎCLayer (𝑜𝑡 ,Δ) = Ω(𝜏 (𝑜𝑡 ,Δ))

In the formulas, 𝑓 maps the operator API, 𝜎 packages and imports Python code, and Ω links
the compiled dynamic libraries in the C layer. 𝜏 applies mappings based on Δ. Each component of
Algorithm 2 is detailed as follows:

• Partial Operator API Mapping (Lines 2-4). This step maps only the operator API name
and compatible parameters, leaving incompatible parameters unmapped. For instance, when
converting torch.nn.MaxPool2d from PyTorch to Paddle, the mapped entries in Δ provide the
updated name (i.e., paddle.nn.MaxPool2D) and parameters (e.g., kernel_size, stride), which are
then applied to update 𝐶𝐶 and replace the operator context in the source model AST.

• Python Underlying Lib Alignment (Lines 9-11). This step aligns framework Python source
code related to incompatible API parameters, then packs and imports the aligned code to bridge
operator semantic inconsistencies. For instance, to bridge the incompatible parameter alpha
from torch.add, We first locate similar code lines within the add function in 𝑂𝑡 (i.e., if 𝑂𝑡 is a
class, modifications are made in the init or forward function; if 𝑂𝑡 is a function, it is modified
directly) based on modification points from Δ. If a match is found, we associate alpha with the
corresponding code lines in Δ; If no match is found, we insert code lines from Δ directly into the
function. This aligned function (i.e., modified_add) along with its context from Δ is packed in a
new Python file. We then update𝐶𝐶 with the import of this file and replace the original function
with the aligned function (i.e., add replaced with modified_add). The updated 𝐶𝐶 replaces the
operator context in the source model AST.

• C Underlying Lib Alignment (Lines 9, 12-13). This step aligns framework C source code
related to incompatible API parameters, then compiles the aligned code into a dynamically linked
shared library file and links the file. For instance, to bridge the incompatible parameter dilation
from torch.nn.MaxPool2d, we adopt the same alignment approach as used for framework Python

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

Bridging Operator Semantic Inconsistencies: A Source-Level Cross-Framework Model Conversion Approach FSE091:13

Algorithm 2: A dynamic layered alignment algorithm for mapping operator API and
bridging operator semantic inconsistencies

Input: SO: Operator in source framework model; T: Operator mapping table;
Output: TO: Aligned operator in target framework model;

1 name_mapping, param_mappings, variant_codes ← get_from_table(T, SO);

2 name, args, kwargs ← parse_api(SO);

3 new_name← map_API_name(name, name_mapping);

4 new_kwargs ← map_API_params(args, kwargs, param_mappings);

5 if variant_codes exist then
6 for variant_code in variant_codes do
7 if variant_code.Param ∈ {args, kwargs} then
8 for line, point in variant_code.Content do
9 ailgned_code← locate_and_align_code(𝑣𝑎𝑟𝑖𝑎𝑛𝑡_𝑐𝑜𝑑𝑒.𝐶𝑜𝑛𝑡𝑒𝑥𝑡 , 𝑙𝑖𝑛𝑒 ,

𝑝𝑜𝑖𝑛𝑡);
10 if variant_code.Level = Python then

// Aligning Framework Python Source Code

11 pack_and_import_code(ailgned_code);

12 else

// Aligning Framework C Source Code

13 compile_and_link_code(ailgned_code);

// Aligned Nodes Generation

14 TO ← generate_aligned_node(SO, new_name, new_kwargs);

15 Return TO

source code to obtain the aligned function. This aligned function (i.e., modified_maxpool2d)
along with its context from Δ is packed in a new C file. We then use a preconfigured CMakeList
to compile the C file into a dynamically linked shared library file (i.e., modified_maxpool2d.so)
and link it by setting LD_PRELOAD on Linux or LoadLibrary on Windows. The preconfigured
CMakeList is configured as follows:

– Initial CMake Configuration. It sets the minimum required version of CMake, defines the
project name, and specifies language standards (e.g., C++11, C++14, or CUDA), providing the
necessary environment parameters.

– Third-Party Library Configuration. It configures all third-party libraries required for the
project. It sets environment variables and extends CMake search paths to efficiently locate
and integrate the necessary library configuration files. This streamlined process ensures the
seamless integration of all required dependencies.

– Compilation and Linking Configuration. CMake commands are used to define and com-
pile dynamic libraries in the project. This setup helps ensure they are correctly linked to all
dependencies. It is necessary to obtain the current Conda environment (i.e., CONDA_PREFIX),
DL library files (e.g, PADDLE_LIBRARIES), and the libraries for optimal linking (i.e., add_library).

The final step (Lines 14-15) of Algorithm 2 updates the source model AST to align operator
semantics within the target framework by replacing framework-specific nodes with newly aligned
operator nodes.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

FSE091:14 Xingpei Li, Yan Lei, Zhouyang Jia, Yuanliang Zhang, Haoran Liu, Liqian Chen, Wei Dong, and Shanshan Li

4.3 Operator Building

We attempt to generate an approximate expression in the target framework by analyzing the frame-
work source code at the C layer of the source framework, as there are no inter-layer dependencies.
We retrieve function calls from Δ and read their execution order, using target framework operators,
parameters, and arithmetic operators to construct functionally equivalent code expressions.

To achieve this, we first extract function calls from Δ, corresponding to the "Variant Code" entry
in the mapping table, which outlines the source framework’s computation. Their order reflects
the execution sequence, serving as a reference for the target framework. We then use regular
expressions to track and parse:

• Sub Function Call. Identifying sub-functions invoked within the same code file that contribute
to the computation. The extracted sub-functions are recursively tracked and parsed to reveal
deeper computation logic.

• Argument List. Extracting key parameters such as ksize, strides, which influence computation.

• Target Framework Operator. Matching extracted operations and parameters against available
operators in the target DL framework (e.g., paddle.add, paddle.nn.functional.interpolate) to build
semantically equivalent expressions.

• Arithmetic Operator. Parsing binary and ternary arithmetic operations, including +, -, *, /, &,
and conditional expressions like ? :.

These elements are stored sequentially, matched with target framework operators, and reordered
by precedence to reconstruct functionally equivalent expressions. For instance, torch.addcdiv follows
an execution path from the high-level API to the kernel implementation (addcdiv_cpu_kernel),
where the operation is computed as 𝑣𝑎𝑙𝑢𝑒 +𝑣𝑎𝑙𝑢𝑒 ∗ 𝑡𝑒𝑛𝑠𝑜𝑟1/𝑡𝑒𝑛𝑠𝑜𝑟2, with value, tensor1, and tensor2
as parameters of 𝑜𝑠 .

5 Evaluation Setup

To evaluate ModelX, we consider the following three research questions (RQs):

• RQ3: How reliable and equivalent is ModelX in converting operators across frameworks? This
question evaluates the conversion success rate, MAE, and RMSE of ModelX in 686 sample PyTorch
operators.

• RQ4:CanModelX outperform the existing state-of-the-art (SOTA) approaches for cross-framework
model conversion? This question compares ModelX with ONNX [41], PaConvert [4], and three
popular LLMs (i.e., ChatGPT-3.5, ChatGPT-4o, DeepSeek-Coder).

• RQ5: How robust is ModelX when applied to cross-framework model conversion tasks? This
question evaluates the robustness by applying ModelX to cross-framework model conversion in
three application fields: vision, text, and audio.

All of our experiments are conducted on a machine running 64-bit CentOS7.9 with a 52-core
CPU (Intel(R) Xeon(R) Platinum8358), four A100 GPUs, and 394G RAM. To ensure the fairness of
the comparison experiments, we conduct each experiment with identical configurations (one CPU
core and the same GPU). We evaluate ModelX in cross-framework conversion from PyTorch 2.0.1
to Paddle 2.5.2, as detailed in Table 1, to answer these RQs. PyTorch and Paddle are popular DL
frameworks, with 71.7K/20.9K stars on GitHub.

5.1 Implementation

We evaluate ModelX’s reliability and equivalence using 686 operators, each with 10 LLM-generated
test cases [42, 43], covering diverse conditions to compute success rate, MAE, and RMSE. We com-
pare ModelX with two SOTA IR-level converters, ONNX [41] and PaConvert [4], using 18 vision
models on ImageNet-1K [14] in dynamic graph mode. Latency is measured as the time to evaluate

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

Bridging Operator Semantic Inconsistencies: A Source-Level Cross-Framework Model Conversion Approach FSE091:15

the entire ImageNet-1K dataset, averaged over 10 independent executions of each model. To miti-
gate cold-start bias (e.g., initial GPU warmup), we discard the first execution and report the mean
of the subsequent 10 runs. ONNX uses pytorch2onnx [10] and X2paddle [3], while ModelX stan-
dardizes weights via NumPy [57] for consistency. We also test three LLMs (gpt-3.5-turbo-0125,
gpt-4o-2024-05-13, deepseek-coder-V2-0724) via OpenAI and DeepSeek APIs [13, 42, 43],
using both original and chain-of-thought prompts [32, 60, 63] to identify operator semantic in-
consistencies. For robustness, we select 13 high-frequency model types (e.g., ResNet, VGG) and
choose representative instances (e.g., resnet50, vgg16), totaling 52 models. These are evaluated
on CIFAR-10, CIFAR-100, FashionMNIST, IMDB, and Urbansound8K with task-specific training
setups. Vision models are trained for 100 iterations (learning rate 0.001), text models on IMDB for
sentiment analysis, and audio models on Urbansound8K with a reduced 0.0001 learning rate for
better feature extraction.

5.2 Evaluation Metric

We evaluate the above RQs with the following metrics.
To evaluate the equivalence of ModelX, we utilize two key metrics: Maximum Absolute Error

(MAE) and Root Mean Squared Error (RMSE), as suggested by existing studies [5]. These metrics
evaluate the similarity of outputs before and after conversion. Following the approach in [15], we
set a threshold 𝜖 of 1 × 10−4 to determine the equivalence of operators before and after conversion.
Lower MAE and RMSE scores indicate consistent and equivalent conversions, confirming that our
evaluation is reliable and based on established research.

• MAE: This metric measures the largest absolute difference between the predicted outputs in
Paddle and the actual outputs observed in PyTorch during the experiment.

MAE =
𝑛

max
𝑖=1

|𝑦actual𝑖 − 𝑦
predicted
𝑖 |

where 𝑦actual𝑖 and 𝑦
predicted
𝑖 are the metrics from the Paddle and PyTorch operators, respectively.

• RMSE: This metric measures the square root of the average of the squared differences between the
predicted outputs in Paddle and the actual outputs observed in PyTorch during the experiment.

RMSE =

√√
1

𝑛

𝑛∑
𝑖=1

(𝑦actual𝑖 − 𝑦
predicted
𝑖)2

where 𝑦actual
𝑖 and 𝑦

predicted
𝑖 are as defined above.

In these comparison experiments, we evaluate model performance using four key metrics:

Accuracy
(𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

)
, Precision

(𝑇𝑃
𝑇𝑃+𝐹𝑃

)
, Recall

(𝑇𝑃
𝑇𝑃+𝐹𝑁

)
, and F1 Score

(
2×Recall×Precision
Recall+Precision

)
. These

metrics measure overall correctness, positive prediction accuracy, instance identification, and
balance between precision and recall.
Additionally, to evaluate the robustness of ModelX in cross-framework model conversion, we

utilize the Metric Gap to quantify performance variances before and after conversion, defined
formally in the equation below.

Metric Gap = |𝑀𝑒𝑡𝑟𝑖𝑐𝑏𝑒 𝑓 𝑜𝑟𝑒 −𝑀𝑒𝑡𝑟𝑖𝑐𝑎𝑓 𝑡𝑒𝑟 |

6 Result Analysis

6.1 RQ3: Reliability and Equivalence of ModelX

In this RQ, we first conduct a comprehensive experiment with 686 sampled operators from Py-
Torch [47], as detailed in Table 1. We evaluate the reliability of ModelX by calculating the proportion

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

FSE091:16 Xingpei Li, Yan Lei, Zhouyang Jia, Yuanliang Zhang, Haoran Liu, Liqian Chen, Wei Dong, and Shanshan Li

Table 3. Overall conversion success of ModelX in sampled operators conversion

Operator Type Number of Sampled Operators Conversion Success Rate Avg. Conversion Time (ms)
Metrics

Avg. MAE Avg. RMSE

Tensor Ops 278 97.12% (270/278) 948.67 4.57 ×10−7 2.13 ×10−6

Layer Ops 190 98.95% (188/190) 924.14 3.82 ×10−6 1.43 ×10−6

Other Ops 218 76.14% (166/218) 1102.21 1.67 ×10−5 4.36 ×10−5

Fig. 7. Cumulative distribution of MAE and RMSE in assessing the equivalence of ModelX

of sampled operators that successfully pass all generated test cases, emphasizing the coverage
of these test cases to encompass various operator usage scenarios, including extreme values and
boundary conditions. Moreover, we assess the equivalence of ModelX by calculating MRE and
RMSE, comparing these values against the threshold 𝜖 of 1 × 10−4 [15]. The experimental results
are shown in Table 3 and Figure 7. Table 3 reveals that (1) ModelX converts 624 of 686 operators
(91%), with two key categories (i.e., Tensor Ops and Layer Ops) achieving success rates over 95%,
highlighting its reliability. Additionally, it successfully supports all 271 high-frequency operators in
the real world (see Section 3 before Section 3.1); (2) Average MAE and RMSE for all operator types
are well below 𝜖 , indicating high equivalence, whereas higher averages for Other Ops indicate
precision challenges; (3) Average conversion times for all types of operators are low, highlighting
the efficiency of ModelX. Figure 7 shows the cumulative distribution of MRE and RMSE with a
logarithmic horizontal axis for variance clarity. Results indicate MRE and RMSE are mostly below
the threshold 𝜖 . Specifically, 60% of MAE values fall under 1 × 10−6, and over 90% under 5 × 10−6.
For RMSE, 30% are below 1 × 10−6, 50% under 1 × 10−5, and over 90% below 5 × 10−5. Additionally,
about 15% of MAE and RMSE values are zero, likely due to boolean outputs or simple computations.
Experimental Result to RQ3. The result indicates that ModelX successfully converts 91% of

sampled operators, including key operator types like tensors and layers, confirming its reliability in
cross-framework model conversion. The experiment validates its equivalence with consistently low
MAE and RMSE across a wide range of values under the threshold 𝜖 . Further details on unsupported
operators are provided in Section 7.

6.2 RQ4: Comparison against Existing IR-Level Works and LLMs

6.2.1 Comparison against IR-Level Model Conversion Approaches. We first compare ModelX with
state-of-the-art ONNX [41] and PaConvert [4] for cross-framework model conversion using 18
vision inference models detailed in Table 4. We evaluate the converted Paddle models on ImageNet-
1K [14], measuring accuracy (i.e., Precision, Recall, F1 Score) and efficiency (i.e., Evaluation Latency,
the time to evaluate the entire dataset). Table 4 summarizes these well-known vision inference
models, each with over 100 lines of code and a moderate number of operators. These models are
commonly used in vision-related tasks. Table 5 presents the significance in two aspects: (1) With
operator semantic inconsistencies (i.e., DenseNet, ShuffleNet, ResNet, Inception3), where ModelX
significantly outperforms the baselines by supporting more models and improving performance
by up to approximately 2%, indicating better compatibility and efficiency; (2) Without semantic

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

Bridging Operator Semantic Inconsistencies: A Source-Level Cross-Framework Model Conversion Approach FSE091:17

Table 4. Statistical comparison among vision inference models

Model Type

Statistical
Tested Model Instances Number of Operators in Model Type Lines of Code

AlexNet alexnet 23 45
Inception3 inception3 53 400
ResNet resnet18, 34, 50, 101 45 258

DenseNet densenet121, 161, 169, 201 42 190
ShuffleNet shufflenetv2_0_5, v2_1_0, v2_1_5, v2_2_0, 43 151

VGG vgg11, 13, 16, 19 31 72

Table 5. Result of comparison with SOTA approaches in cross-framework model conversion

Model type Tool
Evaluation Metrics

Model type Tool
Evaluation Metrics

Latency (s) Precision Recall F1 Score Latency (s) Precision Recall F1 Score

AlexNet

ONNX 116.01 0.526 0.5256 0.5187

VGG

ONNX 116.54 0.6934 0.6893 0.6852

PaConvert 119.52 0.526 0.5256 0.5187 PaConvert 117.12 0.6934 0.6893 0.6852

ModelX 116.24 0.526 0.5256 0.5187 ModelX 115.56 0.6934 0.6893 0.6852

DenseNet

ONNX Not supported

ShuffleNet

ONNX Not supported

PaConvert Not supported PaConvert Not supported

ModelX 125.63 0.7507 0.7451 0.7423 ModelX 119.35 0.6793 0.6748 0.6708

ResNet

ONNX 118.51 0.7418 0.737 0.7338

Inception3

ONNX 119.44 0.6801 0.6676 0.6635

PaConvert 120.01 0.7417 0.7369 0.7337 PaConvert Not supported

ModelX 118.44 0.7642 0.7575 0.7614 ModelX 117.59 0.6921 0.6851 0.6812

Note: (1) DenseNet, ResNet, ShuffleNet, and Inception3 have operator semantic inconsistencies, while AlexNet and VGG do not;
(2) For each model type, latency and performance are averaged over 10 warm runs per instance, then across instances (see Table 4).

inconsistencies (i.e., AlexNet, VGG), where ModelX significantly matches the baselines, ensuring
no performance loss. Moreover, ModelX supports all tested models, while ONNX and PaConvert,
as IR-level converters, fail to bridge incompatible parameters, causing conversion failures (e.g.,
dilation in torch.nn.MaxPool2d for DenseNet and ShuffleNet, a and b in torch.nn.init.trunc_normal_
for Inception3). In addition, ModelX reduces average evaluation latency by approximately 0.46%
over ONNX and 1.50% over PaConvert, while maintaining efficient dynamic graph execution.

6.2.2 Comparison against Three Popular LLMs. Besides comparing IR-level model conversion
approaches, we evaluate three popular LLMs: ChatGPT-3.5, ChatGPT-4o, and DeepSeek-Coder by
using both original prompting and chain-of-thought (COT) prompting (note that prompt details
can be accessed via the GitHub link2). We first utilize LLMs to randomly generate five test cases for
each model, followed by a cross-framework model conversion for each model. We then evaluate
whether the converted model can pass all the test cases and check for any syntax and semantic
errors in the converted model. The experiment results are shown in Table 6. We find that (1)
ChatGPT-4o outperforms the other models, successfully passing all test cases (9/18); (2) Prompt
type shows limited effects on LLMs during cross-framework model conversion tasks. In Table 6,
COT is identified as a SOTA prompting technique, which benefits only ChatGPT-4o, particularly
in addressing syntax errors in ShuffleNet and ResNet; (3) The main syntactic errors highlighted
in the results include model structure errors and operator declaration errors; (4) LLMs fail to
bridge operator semantic inconsistencies, as evidenced in ResNet conversions using ChatGPT-4o.
Specifically,mode parameter in torch.nn.init.kaiming_normal_ affects model weight updating during
processing.
Experimental Result to RQ4. This result indicates that ModelX matches the capabilities

of IR-level converters while improving performance in cross-framework model conversion. It
effectively bridges operator semantic inconsistencies and maintains efficient evaluation latency
and throughput with minimal overhead. Moreover, ModelX significantly outperforms LLMs, which
struggle with syntactic correctness, especially when handling more complex model code.

2Prompt details are available at https://github.com/zuishenke123/ModelX/tree/master/EVALUATION/LLMsExperiment

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

FSE091:18 Xingpei Li, Yan Lei, Zhouyang Jia, Yuanliang Zhang, Haoran Liu, Liqian Chen, Wei Dong, and Shanshan Li

Table 6. Overall effectiveness of LLMs in cross-frameworks model conversion

Model type LLM Prompt Type All Cases Passed Error Type Model type LLM Prompt Type All Cases Passed Error Type

AlexNet

ChatGPT-3.5 Original, COT Success -

ShuffleNet

ChatGPT-3.5 Original, COT Failed Syntax

DeepSeek-Coder Original, COT Success - DeepSeek-Coder Original, COT Failed Syntax

ChatGPT-4o Original, COT Success - ChatGPT-4o
Original Failed Syntax

COT Success -

DenseNet

ChatGPT-3.5 Original, COT Failed Syntax

VGG

ChatGPT-3.5 Original, COT Failed Syntax

DeepSeek-Coder Original, COT Failed Syntax DeepSeek-Coder Original, COT Failed Syntax

ChatGPT-4o Original, COT Failed Syntax ChatGPT-4o Original, COT Success -

ResNet

ChatGPT-3.5 Original, COT Failed Syntax

Inception3

ChatGPT-3.5 Original, COT Failed Syntax

DeepSeek-Coder Original, COT Failed Syntax DeepSeek-Coder Original, COT Failed Syntax

ChatGPT-4o Original, COT Failed Semantic ChatGPT-4o Original, COT Failed Syntax

6.3 RQ5: Robustness of ModelX

To evaluate ModelX’s robustness, we conduct performance and sensitivity analyses across various
application fields: vision (41 models), text (3 models), and audio (8 models). The performance
analysis involves calculating and displaying the average metric gaps for these models before and
after conversion, using datasets like CIFAR10, CIFAR100, and FashionMNIST for vision models.
Sensitivity analysis assesses model adaptability across different datasets within the same field.
The results are presented in Table 7, Figure 8, and Figure 9. Table 7 presents average metric gaps
across three application fields for ModelX, as well as two baselines (i.e., PaConvert and ONNX).
The smallest average metric gap is 0.0188 for FashionMNIST, indicating strong consistency, while
CIFAR100 shows the largest gap at 0.0335, highlighting areas where conversion robustness could be
improved. Further analysis focuses on Precision and Recall, as F1 Score is simply a balance between
the two and is not critical for this analysis. Moreover, compared to both baselines, ModelX achieves
the best performance with the smallest metric gaps. Figure 8 reveals that (1) Most models have small
gaps in Precision and Recall, centered around 0.0255 and 0.0222, indicating that ModelX effectively
maintains the stability of these metrics during a model conversion; (2) These distributions closely
follow the normal distribution, emphasizing the robustness of our model conversion tool. Moreover,
we conducted a further sensitivity analysis on vision field models, analyzing the distribution of
metric gaps across different datasets. The heatmap in Figure 9 shows that the FashionMNIST dataset
has smaller metric gaps (0.0177 to 0.0206), indicating consistent performance across metrics. While
CIFAR10 and CIFAR100 show slightly larger precision gaps (i.e., 0.0596 and 0.0362, respectively),
overall consistency still demonstrates that ModelX is robust across datasets.
Experimental Result to RQ5. This result highlights the robustness of ModelX in cross-

framework conversions, with minimal metric gaps (all under 3.4%) and stable behavior across

Table 7. Results of performance metrics for ModelX in cross-framework model conversion.

Fields Datasets Metrics
Frameworks

Metric Gap ONNX Baseline PaConvert Baseline
PyTorch Paddle

Vision

CIFAR10
Precision 0.8222 0.7626

0.0334 0.0661 0.0680Recall 0.7698 0.7486
F1 Socre 0.7685 0.7490

CIFAR100
Precision 0.4897 0.4535

0.0335 0.0685 0.0713Recall 0.4603 0.4289
F1 Socre 0.4534 0.4204

FashionMNIST
Precision 0.9133 0.8956

0.0188 0.0490 0.0374Recall 0.9098 0.8918
F1 Socre 0.9093 0.8887

Text IMDB

Accruacy 0.7701 0.7824

0.0261 0.0572 0.0450
Precision 0.7607 0.8065
Recall 0.7886 0.7431
F1 Socre 0.7742 0.7734

Audio Urbansound8K
Accuracy 0.3160 0.3042

0.0097 0.0380 0.0321Precision 0.2838 0.2770
Recall 0.3138 0.3243

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

Bridging Operator Semantic Inconsistencies: A Source-Level Cross-Framework Model Conversion Approach FSE091:19

Fig. 8. Distribution of metric gaps (i.e., Precision, Recall) for ModelX in cross-framework model conversion

Fig. 9. Heatmap of sensitivity analysis for ModelX in vision fields

datasets, demonstrating strong robustness and practical applicability in real-world cross-framework
deployment scenarios.

7 Limitation and Discussion

Unsupported Operators Analysis. Despite its broad capabilities, ModelX does not support 62
specific operators from PyTorch [47] to Paddle [38], mainly those infrequently used. Key reasons
for these limitations include: (1) Unsupported framework-specific mechanisms: TorchScript [17] in
PyTorch supports dynamic graph generation with flexible tracing and scripting. In contrast, JIT,
using the@paddle.jit.to_static decorator, is less adaptable to dynamic changes, complicating the
direct conversion of PyTorch operations reliant on complex control flows; (2) Operator compatibility
issues: We bridge missing operator inconsistencies by attempting to map PyTorch operators to
existing Paddle equivalents. However, if directly building PyTorch operators with available Paddle
operators is not feasible, the conversion is not supported. Creating new operators within the DL
library, a process known as operator porting, is resource-intensive and complex. Instead, operator
conversion focuses on aligning existing inconsistencies more practically.
Threats to Viability of Conversion. DL frameworks like TensorFlow [1], PyTorch [47], and

PaddlePaddle [38] support multiple backends (e.g., CPU, GPU), impacting operator semantic con-
sistency. ModelX guarantees that each converted model is executable on at least one supported
backend. While our tests focus on PyTorch and Paddle, future work will expand to more frameworks
and models for validation.

Generalizability and Specificity. For generalizability, ModelX extends to TensorFlow [1] and
MXNet [7], converting the same 18 vision inference models from Table 4 (see Section 6.2.1). As
shown in Table 8, it achieves success rates of 94.4% and 78%, where success means all operators are

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

FSE091:20 Xingpei Li, Yan Lei, Zhouyang Jia, Yuanliang Zhang, Haoran Liu, Liqian Chen, Wei Dong, and Shanshan Li

Table 8. Generalizability of ModelX in cross-framework conversion

Conversion Process Tested Number Successful Conversions Failed Conversions Success Rate

PyTorch -> TensorFlow 18 17 1 94.4%

PyTorch -> MXNet 18 14 4 78%

correctly mapped (no failures, MRE/RMSE below 𝜖) and the model runs on ImageNet-1K [14]. Most
failures are due to MRE/RMSE exceeding 𝜖 . Although supporting new frameworks requires building
mapping tables, this is a one-time and reusable effort. We plan to extend to more frameworks
to improve generalizability further. For specificity, ModelX effectively bridges operator semantic
inconsistencies, outperforming IR-level converters. Conversion starts from IR for efficient API
mapping, and when needed, proceeds to source-level adjustments to handle semantic and com-
patibility issues (e.g., incompatible parameters, missing operators), leveraging IR and source code
complementarily for better accuracy. ModelX targets open-source DL frameworks [1, 7, 38, 47],
enabling the reconstruction of missing operators in target frameworks.

Impact on Deep Learning Transpilers. ModelX enhances existing DL transpilers [4, 9, 20, 24,
30, 34, 41] by bridging operator semantic inconsistencies at the source code level. In contrast to
traditional approaches that focus on API syntax mapping and graph-based conversion, ModelX
modifies framework source code to improve cross-framework compatibility. Furthermore, it reduces
complexity by eliminating the typical two-step conversion pipeline (A→IR, IR→B), and introduces
layered code alignment techniques that preserve semantic consistency in converted models.

8 Related Work

Computation Graph-Based Model Converters. Related works in graph-based model conversion
include ONNX [41], MMdnn [34], Jittor [24], TVM [8], and MLIR [29]. ONNX enables framework
interoperability, while MMdnn provides a toolkit for model migration. Jittor supports dynamic
optimization of computation graphs, TVM compiles models into optimized low-level code, and
MLIR facilitates conversion with domain-specific languages.
Operator APIs-Based Model Converters. Unified operator APIs facilitate model migration
across frameworks through high-level interfaces. For example, Keras [9] provides a versatile
interface compatible with TensorFlow [1], Theano [55], and CNTK [50], enhancingmodel portability.
PaConvert [4], created by the Paddle team, efficiently converts models from PyTorch to Paddle,
ensuring consistent performance. TensorLayerX [54] offers unified APIs for constructing and
converting models across various frameworks.

9 Conclusion

This paper presents the first empirical study of operator semantic inconsistencies in DL frameworks,
demonstrating their critical impact on model reliability during cross-framework conversion. We
propose ModelX, a source-level approach that directly modifies framework code (beyond API-
level mapping) to resolve inconsistencies. Experiments show that ModelX outperforms existing
converters and LLMs while maintaining robustness across various application fields.

10 Data Availability

ModelX and its data are publicly available at: https://github.com/zuishenke123/ModelX.git

Acknowledgments

The authors express thanks to the anonymous reviewers for their insightful comments. This
research was funded by NSFC (No. 62272473, No.U2441238 and No.62202474) and the Science and
Technology Innovation Program of Hunan Province (No.2023RC1001 and No.2023RC3012).

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

Bridging Operator Semantic Inconsistencies: A Source-Level Cross-Framework Model Conversion Approach FSE091:21

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, et al. 2016. TensorFlow: a system for Large-Scale machine learning. In 12th USENIX

symposium on operating systems design and implementation (OSDI 16). 265–283.

[2] K Azarudeen, G Vinoth Chakkaravarthy, Premkumar Murugiah, and S Kharthikeyan. 2021. A novel approach for

pattern string matching in intrusion detection system. In Journal of Physics: Conference Series, Vol. 1916. IOP Publishing,

012007. doi:10.1088/1742-6596/1916/1/012007

[3] Baidu. 2019. X2Paddle. https://github.com/PaddlePaddle/X2Paddle. Accessed: 2024-07-05.

[4] Baidu. 2022. PaConvert. https://github.com/PaddlePaddle/PaConvert. Accessed: 2024-07-05.

[5] Alexei Botchkarev. 2018. Performance metrics (error measures) in machine learning regression, forecasting and

prognostics: Properties and typology. arXiv preprint arXiv:1809.03006 (2018). doi:10.28945/4184

[6] Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, Shuaihong Wu, and Xin Peng. 2022. Understanding performance

problems in deep learning systems. In Proceedings of the 30th ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 357–369. doi:10.5281/zenodo.7060209

[7] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and

Zheng Zhang. 2015. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems.

arXiv preprint arXiv:1512.01274 (2015). doi:10.48550/arXiv.1512.01274

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,

Yuwei Hu, Luis Ceze, et al. 2018. TVM: An automated End-to-End optimizing compiler for deep learning. In 13th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). 578–594.

[9] François Chollet and the Keras Team. 2015. Keras: The Python Deep Learning library. https://keras.io.

[10] PyTorch Contributors. 2024. PyTorch. GitHub repository. https://github.com/pytorch/pytorch

[11] PyTorch Contributors. 2025. Torch ONNX Exporter. https://pytorch.org/docs/stable/onnx.html Accessed: 2025-01-30.

[12] James C Davis, Purvish Jajal, Wenxin Jiang, Taylor R Schorlemmer, Nicholas Synovic, and George K Thiruvathukal.

2023. Reusing deep learning models: Challenges and directions in software engineering. In 2023 IEEE John Vincent

Atanasoff International Symposium on Modern Computing (JVA). IEEE, 17–30. doi:10.1109/JVA60410.2023.00015

[13] DeepSeek. 2024. Models - DeepSeek-coder. https://platform.deepseek.com/api-docs Accessed: 2024-08-18.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A Large-Scale Hierarchical Image

Database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 248–255. doi:10.1109/CVPR.2009.

5206848

[15] Zizhuang Deng, Guozhu Meng, Kai Chen, Tong Liu, Lu Xiang, and Chunyang Chen. 2023. Differential Testing

of Cross Deep Learning Framework APIs: Revealing Inconsistencies and Vulnerabilities. In 32nd USENIX Security

Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 7393–7410. https://www.usenix.org/conference/

usenixsecurity23/presentation/deng-zizhuang

[16] TensorFlowDevelopers. 2025. TensorFlowOfficial API Documentation. https://www.tensorflow.org/api_docs Accessed:

2025-01-30.

[17] Zachary DeVito. 2022. Torchscript: Optimized execution of pytorch programs. Retrieved January (2022).

[18] Adrien Gauffriau, Iryna De Albuquerque Silva, and Claire Pagetti. 2023. Formal description of ML models for

unambiguous implementation. arXiv preprint arXiv:2307.12713 (2023). doi:10.48550/arXiv.2307.12713

[19] GNU Project. 2023. GDB: The GNU Project Debugger. https://www.gnu.org/software/gdb/ Accessed: 2024-06-02.

[20] Linyuan Gong, Jiayi Wang, and Alvin Cheung. 2024. ADELT: transpilation between deep learning frameworks. In

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence. 6279–6287. doi:10.24963/ijcai.

2024/694

[21] Yuanjun Gong, Jianglei Nie, Wei You, Wenchang Shi, Jianjun Huang, Bin Liang, and Jian Zhang. 2024. SICode:

Embedding-Based Subgraph Isomorphism Identification for Bug Detection. In Proceedings of the 32nd IEEE/ACM

International Conference on Program Comprehension. 304–315. doi:10.1145/3643916.3646556

[22] Saqib Iqbal Hakak, Amirrudin Kamsin, Palaiahnakote Shivakumara, Gulshan Amin Gilkar, Wazir Zada Khan, and

Muhammad Imran. 2019. Exact string matching algorithms: survey, issues, and future research directions. IEEE access

7 (2019), 69614–69637. doi:10.1109/ACCESS.2019.2914071

[23] Kaiyang Han, Fanzhi Cao, Tianxin Shi, and Pu Wang. 2023. A Dual Attention Network for Multimodal Remote Sensing

Image Matching. In 2023 4th International Conference on Computer Vision, Image and Deep Learning (CVIDL). IEEE,

128–134. doi:10.1109/CVIDL58838.2023.10166096

[24] Shi-Min Hu, Dun Liang, Guo-Ye Yang, Guo-Wei Yang, and Wen-Yang Zhou. 2020. Jittor: a novel deep learning

framework with meta-operators and unified graph execution. Science China Information Sciences 63 (2020), 1–21.

doi:10.1007/s11432-020-3097-4

[25] Ltd. Huawei Technologies Co. 2022. Huawei mindspore ai development framework. In Artificial Intelligence Technology.

Springer, 137–162. doi:10.1007/978-981-19-2879-6_5

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

FSE091:22 Xingpei Li, Yan Lei, Zhouyang Jia, Yuanliang Zhang, Haoran Liu, Liqian Chen, Wei Dong, and Shanshan Li

[26] Purvish Jajal, Wenxin Jiang, Arav Tewari, Erik Kocinare, Joseph Woo, Anusha Sarraf, Yung-Hsiang Lu, George K

Thiruvathukal, and James C Davis. 2024. Interoperability in deep learning: a user survey and failure analysis of ONNX

model converters. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis.

1466–1478. doi:10.1145/3650212.3680374

[27] Wenxin Jiang, Vishnu Banna, Naveen Vivek, Abhinav Goel, Nicholas Synovic, George K Thiruvathukal, and James C

Davis. 2024. Challenges and practices of deep learning model reengineering: A case study on computer vision. Empirical

Software Engineering 29, 6 (2024), 142. doi:10.1007/s10664-024-10521-0

[28] Haifeng Jin, Franois Chollet, Qingquan Song, and Xia Hu. 2023. AutoKeras: An AutoML Library for Deep Learning.

Journal of Machine Learning Research 24, 6 (2023), 1–6. http://jmlr.org/papers/v24/20-1355.html

[29] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana

Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2020. MLIR: A compiler infrastructure for the end of Moore’s

law. arXiv preprint arXiv:2002.11054 (2020). doi:10.48550/arXiv.2002.11054

[30] Daniel Lenton, Fabio Pardo, Fabian Falck, Stephen James, and Ronald Clark. 2021. Ivy: Templated deep learning for

inter-framework portability. arXiv preprint arXiv:2102.02886 (2021). doi:10.48550/arXiv.2102.02886

[31] Jean-Sébastien LERAT, Ahmed Sidi Mahmoudi, and Saïd Mahmoudi. 2021. Deep Learning Frameworks: Performances

Analysis. (2021).

[32] Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023. Structured chain-of-thought prompting for code generation. ACM

Transactions on Software Engineering and Methodology (2023). doi:10.1145/3690635

[33] Jialin Li, Xueyi Li, and David He. 2019. A directed acyclic graph network combined with CNN and LSTM for remaining

useful life prediction. IEEE Access 7 (2019), 75464–75475. doi:10.1109/ACCESS.2019.2919566

[34] Yu Liu, Cheng Chen, Ru Zhang, Tingting Qin, Xiang Ji, Haoxiang Lin, and Mao Yang. 2020. Enhancing the inter-

operability between deep learning frameworks by model conversion. In Proceedings of the 28th ACM joint meeting

on European software engineering conference and symposium on the foundations of software engineering. 1320–1330.

doi:10.1145/3368089.3417051

[35] SR Lyernisha, C Seldev Christopher, and SR Fernisha. 2023. Object recognition from enhanced underwater image

using optimized deep-CNN. International Journal of Wavelets, Multiresolution and Information Processing 21, 04 (2023),

2350007. doi:10.1142/S0219691323500078

[36] Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang, Yu Jiang, Changjian Wang, and Shanshan Li. 2023. At which training

stage does code data help llms reasoning? arXiv preprint arXiv:2309.16298 (2023). https://arxiv.org/abs/2309.16298

[37] Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yongbin Li. 2024. How to understand whole

software repository? arXiv preprint arXiv:2406.01422 (2024). doi:abs/2406.01422

[38] Yanjun Ma, Dianhai Yu, Tian Wu, and Haifeng Wang. 2019. PaddlePaddle: An open-source deep learning platform from

industrial practice. Frontiers of Data and Domputing 1, 1 (2019), 105–115. doi:10.11871/jfdc.issn.2096.742X.2019.01.011

[39] Gaurav Menghani. 2023. Efficient deep learning: A survey on making deep learning models smaller, faster, and better.

Comput. Surveys 55, 12 (2023), 1–37. doi:10.1145/3578938

[40] MLEAP Consortium. 2023. EASA Research – Machine Learning Application Approval (MLEAP) Interim Technical Report.

Technical Report. European Union Aviation Safety Agency. Horizon Europe research and innovation programme

report.

[41] ONNX. 2017. Open Neural Network Exchange. https://onnx.ai/. Accessed: 2024-05-08.

[42] OpenAI. 2024. Models - GPT-3.5-turbo. https://platform.openai.com/docs/models/gpt-3-5-turbo Accessed: 2024-08-18.

[43] OpenAI. 2024. Models - GPT-4o. https://platform.openai.com/docs/models/gpt-4o Accessed: 2024-08-18.

[44] Moses Openja, Amin Nikanjam, Ahmed Haj Yahmed, Foutse Khomh, and Zhen Ming Jack Jiang. 2022. An empirical

study of challenges in converting deep learning models. In 2022 IEEE International Conference on Software Maintenance

and Evolution (ICSME). IEEE, 13–23. doi:10.1109/ICSME55016.2022.00010

[45] PaddlePaddle. 2025. PaddlePaddle Documentation. https://www.paddlepaddle.org.cn/documentation/docs/en/2.5/api/

index_en.html Accessed: 2025-01-30.

[46] PaddlePaddle. 2025. PaddlePaddle GitHub Repository. https://github.com/PaddlePaddle Accessed: 2025-02-10.

[47] A Paszke. 2019. Pytorch: An imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703

(2019). doi:10.48550/arXiv.1912.01703

[48] Python Software Foundation. 2023. pdb - The Python Debugger. https://docs.python.org/3/library/pdb.html Accessed

on 2023-10-25.

[49] PyTorch. 2025. PyTorch Documentation. https://pytorch.org/docs/2.0/ Accessed: 2025-01-30.

[50] Frank Seide and Amit Agarwal. 2016. CNTK: Microsoft’s open-source deep-learning toolkit. In Proceedings of the 22nd

ACM SIGKDD international conference on knowledge discovery and data mining. 2135–2135. doi:10.1145/2939672.2945397

[51] Thomas Serre, Lior Wolf, and Tomaso Poggio. 2005. Object recognition with features inspired by visual cortex. In

2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), Vol. 2. IEEE, 994–1000.

doi:10.1109/CVPR.2005.254

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

Bridging Operator Semantic Inconsistencies: A Source-Level Cross-Framework Model Conversion Approach FSE091:23

[52] Qingchao Shen, HaoyangMa, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung, and Xiang Chen. 2021. A comprehensive

study of deep learning compiler bugs. In Proceedings of the 29th ACM Joint meeting on european software engineering

conference and symposium on the foundations of software engineering. 968–980. doi:10.1145/3468264.3468591

[53] Luna Sun, Zhenxue Chen, QM Jonathan Wu, Hongjian Zhao, Weikai He, and Xinghe Yan. 2021. AMPNet: Average-and

max-pool networks for salient object detection. IEEE Transactions on Circuits and Systems for Video Technology 31, 11

(2021), 4321–4333. doi:10.1109/TCSVT.2021.3054471

[54] TensorLayer Team. 2023. TensorLayerX: An Open-Source Deep Learning Library. https://github.com/tensorlayer/

tensorlayerx. Accessed: 2024-09-12.

[55] The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry

Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, et al. 2016. Theano: A Python framework for

fast computation of mathematical expressions. arXiv preprint arXiv:1605.02688 (2016). doi:10.48550/arXiv.1605.02688

[56] Veronika Thost and Jie Chen. 2021. Directed acyclic graph neural networks. arXiv preprint arXiv:2101.07965 (2021).

doi:10.48550/arXiv.2101.07965

[57] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The NumPy array: a structure for efficient numerical

computation. Computing in science & engineering 13, 2 (2011), 22–30. doi:10.1109/MCSE.2011.37

[58] Mohammad Wardat, Breno Dantas Cruz, Wei Le, and Hridesh Rajan. 2022. DeepDiagnosis: automatically diagnosing

faults and recommending actionable fixes in deep learning programs. In Proceedings of the 44th international conference

on software engineering. 561–572. doi:10.1145/3510003.3510071

[59] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free lunch for testing: Fuzzing deep-learning

libraries from open source. In Proceedings of the 44th International Conference on Software Engineering. 995–1007.

doi:10.1145/3510003.3510041

[60] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, and Denny Zhou.

2022. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. In Advances in Neural Information

Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,

Inc., 24824–24837. https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-

Paper-Conference.pdf

[61] Xiaoyan Xie, Wanqi He, Yun Zhu, and Hao Xu. 2022. Performance evaluation and analysis of deep learning frameworks.

In Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition. 38–44. doi:10.

1145/3573942.3573948

[62] Chenyuan Yang, Yinlin Deng, Jiayi Yao, Yuxing Tu, Hanchi Li, and Lingming Zhang. 2023. Fuzzing automatic

differentiation in deep-learning libraries. In 2023 IEEE/ACM 45th International Conference on Software Engineering

(ICSE). IEEE, 1174–1186. doi:10.1109/ICSE48619.2023.00105

[63] Zihan Yu, Liang He, ZhenWu, Xinyu Dai, and Jiajun Chen. 2023. Towards better chain-of-thought prompting strategies:

A survey. arXiv preprint arXiv:2310.04959 (2023). doi:10.48550/arXiv.2310.04959

[64] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018. An empirical study on TensorFlow

program bugs. In Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis.

129–140. doi:10.1145/3213846.3213866

Received 2024-09-11; accepted 2025-04-01

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE091. Publication date: July 2025.

