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Abstract
Large Language Models (LLMs) have already demonstrated excel-
lent performance in code generation tasks. However, their pro-
ficiency varies considerably among different programming lan-
guages, performing well in languages like Python, but struggling
with languages such as C++ and Java. This discrepancy limits their
utility in scenarios requiringmulti-language support. Existingmeth-
ods aimed at enhancing the code generation capabilities of LLMs
typically emphasize general performance improvements while over-
looking discrepancies between languages, resulting in suboptimal
outcomes for less proficient languages.

To address this challenge, we propose MetaCoder. Given a task
description, MetaCoder first generates code in high-proficiency lan-
guage, and then summarizes the code. Finally, MetaCoder generates
target code using the task description, generated code, and sum-
mary. Additionally, MetaCoder detects and corrects syntax errors
in the target code. We evaluate MetaCoder on HumanEval-x, and
compared with Zero-Shot, the Pass@1 in generating C++ and Java
code has improved by up to 13.09% and 16.98%, respectively.

CCS Concepts
• Software and its engineering → Software notations and
tools.
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1 INTRODUCTION
Large Language Models (LLMs) have achieved excellent perfor-
mance in code generation tasks and have been widely used in
applications such as Copilot[3] and Cursor[4]. With continuous
improvements in their capabilities, existing LLMs have achieved
high accuracy in code generation. For example, the accuracy of
DeepSeek Coder V2[45] and Llama 3.1[19] on the HumanEval [15]
benchmark reached 89%. However, it is still a challenge to use LLMs
to generate entirely correct code for complex requirements[17, 18].

Many methods have been proposed to improve LLM-based code
generation. Some approaches[12, 25] fine-tune LLMs to generate
correct code, such as OctoPack[31] and MultiPL-T[11]. However,
these methods require a significant amount of resources. Other
methods do not require fine-tuning the model, such as CoT[40]
and SCoT[26], CoT prompts LLMs to generate a natural language
reasoning process first, followed by the corresponding code. Some
methods[18, 35] enables LLMs to adopt different roles, improv-
ing code generation by analyzing task requirements and checking
code. To alleviate the Degeneration-of-Thought problem[27, 36] in
code repair[17, 29, 33, 43], methods such as INTERVENOR[39] are
proposed.

Recent studies[14, 19, 45] have found that the LLM-generated
code exhibits varying accuracy across different programming lan-
guages. On the HumanEval and other benchmarks[9, 44], Llama
3.1 and DeepSeek Coder V2 show such differences. The accuracy
of Llama 3.1 405B in generating Python code is 7% higher than in
generating C++ code, and 8.6% higher than in generating Java code.
Similarly, the accuracy of DeepSeek Coder V2 in generating Python
code is 5.4% and 7.9% higher than that of generating C++ and Java,
respectively. However, none of the existing methods can solve this
problem at a low cost. By using the INTERVENOR method, the ac-
curacy of LLMs generating Python is still 8.5% and 7.3% higher than
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Python Solution
def func(A, B):

return min(B) - min(A)

C++ Solution
int func(vector<int>& A, vector<int>& B) {

return *min_element(begin(B), end(B)) - *min_element(begin(A), end(A));
}

You are given two arrays of equal length, `A` and `B`. Each element 
in `A` has been increased by an integer `X`. As a result, `A` becomes 
equal to `B`. Two arrays are considered equal when they contain the 
same integers with the same frequencies. Return the integer `X`.

Given two arrays `A` and `B`, the 
method returns the difference 
between the minimum value in 
`B` and the minimum value in `A`.

Task Description High-proficiency Language
Summary from

High-proficiency Language Low-proficiency Language Test and Repair

Figure 1: An example of using multiple perspectives to generate code. For this problem, the test cases ensure that for each
input array A and B, there is an X satisfying condition. The Task Description and Summary from High-proficiency Language
are two natural language descriptions that convey the same meaning but from different perspectives.

that of C++ and Java, respectively. In the following sections, we
classify programming languages into high-proficiency languages
and low-proficiency languages based on the accuracy of LLMs in
generating code.

In this paper, we discuss how to enhance the performance of
LLMs in generating code for low-proficiency languages. Since LLMs
exhibit varying performance when generating code in different pro-
gramming languages, why not take advantage of this difference?
That is, we could use high-proficiency languages to improve the
performance of low-proficiency languages. However, it may not
be appropriate to use only the high-proficiency language as the
prompt, since there is a syntactic gap between programming lan-
guages, which could lead to syntax errors in the generated code.
Therefore, we propose using an intermediate language as an inter-
mediary. We found that previous methods only used the natural
language of functional description to generate code. In fact, there
is another type of natural language description of the code, which
is from the implementation perspective. We can use LLMs to sum-
marize the code to obtain the natural language description from
this perspective. In this way, we obtain two different perspectives:
the functional perspective and the implementation perspective.

As shown in Figure 1, the task description for code generation is
referred to as Perspective 1, which is described from the functional
perspective. High-proficiency language serves as the realization
of the task, and the summary of the high-proficiency language,
referred to as Perspective 2, describes the task from the implemen-
tation perspective, while avoiding the syntactic complexities of
the high-proficiency language. We observe that Perspective 1 for
this code generation task is quite complicated. However, once it is
implemented in Python, the task’s underlying idea becomes much
clearer. As a result, Perspective 2 is more direct than Perspective 1.
Therefore, we infer that before generating low-proficiency language
code, we could first generate the high-proficiency language code
and its summary. High-proficiency language and multi-perspective
natural language descriptions can provide additional information
and help unlock the potential of LLMs.

To this end, we propose a method named MetaCoder, which is
the first approach to use multiple perspectives to enhance the gener-
ation of low-proficiency language code. To implement this process,
after receiving the task description, we first have LLMs generate
the corresponding high-proficiency language code. This can be
achieved using various methods, such as CoT, as mentioned earlier.
Next, we summarize the generated high-proficiency language code
to obtain a natural language description from the implementation
perspective, while reducing some syntactic details. Then, we have
LLMs generate the low-proficiency language code based on Per-
spective 1 and Perspective 2, with the high-proficiency language
code provided as a reference. Although many syntactic details have
been reduced in Perspective 2, there may still be some syntax errors
in the generated low-proficiency language code. Therefore, we per-
form a syntax check at the end. We instruct LLMs to generate the
corresponding test code and ensure its correctness. After checking
for syntax errors, we guide LLMs to modify the code according
to the compiler’s feedback until the code compiles successfully
or reaches the maximum number of iterations. Through this ap-
proach, we explore the potential of LLMs in low-proficiency code
generation and achieve improved performance.

To validate the effectiveness of MetaCoder, we conducted exten-
sive experimental evaluations on the widely used HumanEval-x
dataset[44], including six popular LLMs with different number
of parameters, GPT-3.5[1], GPT-4o, Llama 3.1 70B Instruct[19],
DeepSeek V2.5, Qwen2.5 7/14/32/72B Instruct[41] and DeepSeek
R1 7/8/14/32B[22]. We measured the correctness of the generated
programs using unit tests and reported Pass@1. Our experimen-
tal results demonstrate that MetaCoder significantly improves the
performance of LLMs in generating low-proficiency language code.
Specifically, on the HumanEval-x dataset, the Pass@1 of GPT-3.5
for generating C++ code increased from 66.22% to 74.89%, while
the Pass@1 of GPT-4o rose from 84.63% to 87.2%. For Java code
generation, the Pass@1 of GPT-3.5 improved from 64.27% to 74.76%.
On DeepSeek R1 8B, the Pass@1 of C++ code generation increased
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Task Description 
You are given a 2D integer array points and an integer w.Your task is 
to cover all the given points with rectangles. Return the minimum 
number of rectangles.

Each rectangle has its lower end at some point (x1, 0) and its upper 
end at some point (x2, y2), where x1 <= x2, y2 >= 0, and x2 - x1 <= w.

Summary from High-proficiency Language
The function first sorts the points based on their x-coordinates. 

It then iterates through the points, placing a rectangle starting at the 
current point and extending to cover points within the width range. 

The loop continues until all points are covered, and the function 
returns the total number of rectangles used.

points.sort()
……
while index < n:

count += 1
……

std::unordered_map<int, int> maxY;
……
for (const auto& [x, y] : maxY) {

count++;
……

}
……

std::sort(points.begin(), points.end());
……
while (index < n) {

count++;
……

}
……

297/966  FAIL

966/966 PASS

966/966 PASS

Step 1

Step 2

Step 3

Step 0

Figure 2: A motivating example. Directly generate C++ code failed (Step 0) , but succeeded when using the Task Description,
Python solution, and Summary to generate C++ (Step 1 2 3) .

from 50.61% to 62.8%. These experimental results highlight the
importance of multiple perspectives in facilitating code generation.

The contributions of our work can be summarized as follows:
• To the best of our knowledge, we are the first to propose a
method that improves the performance of LLMs in generating
low-proficiency language without requiring model fine-tuning,
by leveraging the varying performance of LLMs across different
programming languages.

• We propose MetaCoder, a method designed to improve the per-
formance of LLMs in generating low-proficiency language. It
utilizes multiple perspectives to mine the potential of LLMs in
code generation.

• We conducted a comprehensive evaluation and demonstrated
that MetaCoder is effective in improving the performance of
LLMs in generating low-proficiency language.

The source code of MetaCoder and experiment data are publicly
available at https://github.com/cx-hub/MetaCoder .

2 MOTIVATION
2.1 A Motivating Example
In this section, we use a code generation example to illustrate the
motivation of our method. This example is from LeetCode’s 128th
Biweekly Contest[6], problem number 3111. Through this problem,
we demonstrate how to leverage task description, Python code, and
the summary of Python code as multiple perspectives to generate
correct C++ code.

The problem, shown in Figure 2, requires computing the mini-
mum number of rectangles needed to cover all points given a set of
coordinates and a threshold 𝑤 . We asked ChatGPT[1] to provide
solutions in both C++ and Python, with the results shown in Step 0
and Step 1. After testing, we found that the Python code from Step
1 passed all test cases, while the C++ code from Step 0 passed only
297 out of 966 test cases, with 669 failed. For example, when the

input is “points = [[2, 1], [1, 0], [1, 4], [1, 8], [3, 5], [4, 6]]” and𝑤 = 1,
the C++ code outputs 1, while the correct answer should be 2. Upon
reviewing the C++ code, we discovered that ChatGPT failed to cor-
rectly interpret the problem statement, resulting in overly complex
and incorrect logic. Specifically, although the coordinates include
both 𝑥 and 𝑦 values, only 𝑥 is relevant for determining the solution,
and the 𝑦 does not affect the final outcome. However, in Step 0,
ChatGPT processed 𝑦, which led to a logical error in calculating
the number of rectangles, resulting in an incorrect implementation.

Next, we asked ChatGPT to summarize the Python code gen-
erated in Step 1, and obtained the natural language description
shown in the Figure 2, which we call Summary (Step 2). The initial
problem description is referred to as Task Description (TD). We
found that the semantics of Summary and TD are the same, as
both aim to calculate the minimum number of rectangles. However,
Summary and TD differ in their descriptions: TD is written from
the functional perspective, explaining what tasks the code needs
to complete, while Summary provides a description of the specific
execution process of the code, such as how many steps the code
includes and how each step is accomplished, while also reducing
the syntax details of the Python code.

This led us to a key insight: if we add Summary to the process of
generating C++ code, could we obtain correct C++ code? We then
generated the C++ code shown in Step 3 of Figure 2. After testing,
we found that the C++ code from Step 3 passed all test cases. The
regenerated code was similar in structure and logic to the Python
code from Step 1, and did not process 𝑦, unlike the C++ code from
Step 0. We believe this improvement is due to the introduction of
Summary, which helped ChatGPT avoid common pitfalls when
generating C++ code.

2.2 Key Ideas
Inspired by the example above, we wonder whether we can improve
the performance of LLMs in generating low-proficiency language
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code in a similar way, by having high-proficiency languages guide
the generation of low-proficiency languages.When generating code
in a low-proficiency language, we first have LLMs generate the code
in a high-proficiency language. Based on our previous findings,
it is more likely to stimulate the potential of LLMs to generate
correct code in high-proficiency languages. Afterward, we ask LLMs
to summarize the generated high-proficiency language code to
obtain a summary. This step primarily provides natural language
descriptions from different perspectives, helping LLMs understand
how to correctly complete the task from another viewpoint. Finally,
we ask LLMs to generate the code in the low-proficiency language
based on the task description, high-proficiency language code, and
summary. By using the advantages of LLMs in high-proficiency
languages, we can assist in generating low-proficiency language
code and fully tap into the potential of LLMs. In a sense, this method
is an alternative to CoT. Both our method and CoT enable LLMs to
complete more complex tasks step by step, utilizing the inherent
capabilities of LLMs. However, unlike CoT, our method generates
high-proficiency language code, summary, and low-proficiency
language code sequentially through interaction with LLMs, rather
than in a single generation step.

However, we should acknowledge that this method is not infalli-
ble. It may not yield better results when LLMs are unable to solve
the problem in the high-proficiency language. For example, if the
generated code fails in the high-proficiency language, it is unlikely
to succeed in the low-proficiency language.

3 Approach
In this section, we present the process of MetaCoder. MetaCoder
utilizes multiple perspectives to generate low-proficiency language
code. Additionally, our method incorporates syntax checking to ef-
fectively address syntax errors caused by long prompts. Our method
consists of two main steps: 1.code generation and 2.test and repair.
For a given programming task description and target programming
language, MetaCoder first generates code in languages that LLMs
are proficient in. Then MetaCoder summarizes the generated code,
and finally generates code in the target language using the multiple
perspectives. In the second step, MetaCoder generates function calls
based on the task description and ensures their validity through
continuous checks. MetaCoder then verifies whether the generated
code from the first step can be compiled successfully. If it cannot,
MetaCoder regenerates the code according to error messages until
it compiles successfully or the number of iterations is exhausted.
Below, we provide a detailed description of these two steps.

3.1 Code Generation
In this step, we use high-proficiency languages to guide the gen-
eration of low-proficiency languages, as shown in Figure 1. After
obtaining the task description, MetaCoder first lets LLMs use the
high-proficiency language to complete the programming task, and
we refer to this generated code as Code_A. Several methods can
be used to generate Code_A, including Zero-Shot, CoT, and oth-
ers, which also makes our method extensible to some extent. After
obtaining Code_A, MetaCoder then obtains natural language de-
scriptions different from the Task Description. Here, we choose
to have LLMs summarize Code_A directly. Existing LLMs have a

Write a Python code to solve the task: Given two arrays 
`A` and `B`, find an integer x …

The method returns the difference between the 
minimum value in `B` and the minimum value in `A`.

def fun(A, B):
return min(B) - min(A)

Summarize and analyze the Python code you generated.

Write a C++ code to solve the task above.

int fun(vector<int>& A, vector<int>& B){…}

Figure 3: An example of code generation. The process of
generating low-proficiency code in the form of a dialogue.

strong ability to understand and analyze code, which allows us to
leverage this ability to obtain a summary of Code_A.

To ensure the summary is both comprehensive and concise,
we ask LLMs to summarize Code_A without excessive detail, as
overly fine-grained summary could hinder the generation of the
target code. Therefore, we add a requirement to the prompt, such
as “comprehensive and concise” when generating the summary.
Compared with the task description, the summary obtained in this
step provides a different angle of description and reduces many of
the syntax details in Code_A.

Finally, we use the task description, Code_A, and summary as
inputs to generate the code in the low-proficiency language, which
we refer to as Code_B. To organize these information, we structure
them in the form of a dialogue and add some necessary details.
Sincemost LLMs have been fine-tuned to optimize this input-output
format, we believe this construction method is more reasonable,
even though it increases the calculation cost. Next, we present the
entire process of the first step using an example.

Figure 3 illustrates the first step of MetaCoder, as discussed
earlier. In this example, after obtaining the task description, Code_A,
and summary, we organize them into a dialogue and add some user
inputs to make the input received by LLMs more reasonable.

3.2 Test and Repair
Due to the potential for errors in code generated by LLMs [33],
especially in longer contexts, we aim to correct syntax errors to fur-
ther improve the code generation performance of MetaCoder . We
first tested potential syntax errors using Phi3 14B [7] and Gemma2
27B [38] on MBCPP [9] and MBJP [9], and found the following
common syntax errors: 1. Modification of function declarations,
including function names and parameters. 2. Generating code in
an incorrect programming language. 3. Uninitialized/undeclared
variables. These syntax errors directly reduce the effectiveness of
MetaCoder, so we aim to perform syntax check after obtaining the
target code.

The second and third types of errors can be detected by directly
compiling the generated code to check if errors exist, but the first
type of error cannot be detected this way. Some methods[39] use
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From a supplied vector of numbers (of length at least two) 
select and return two that are the closest to each other and 
return them in order (smaller number, larger number).

vector<float> find_closest_elements(vector<float> numbers){

find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.2});

int find_closest_elements(vector<float> numbers){
return 0;

}

int main(){
find_closest_elements({1.0, 2.0, 3.0, 4.0, 5.0, 2.2});
return 0;

}

Task Description

Test Code

PASS
FAIL 

INFORMATION
Compile

Function signature

Function call

Figure 4: An example of function call generation. Given the
task description, LLMs generate a valid function call.

test cases to detect errors and fix them, but not all datasets have
example test cases, and using test cases may expose the test case
information, leading to inflated accuracy. To address the first type
of error, we plan to generate a function call that can detect this
specific type of error.

3.2.1 Function Call Generation. As shown in Figure 4, to detect
if the code generated from the Task Description contains the first
type of error mentioned earlier, we simply need to construct a piece
of code that calls the function as declared in the Task Description.
Then, we concatenate this piece of code with the generated code to
be checked, forming the Test Code, and compile it. We refer to this
piece of code that successfully calls the function as a valid function
call. Else, it is considered an invalid function call.

We provide the Task Description to LLMs and ask LLMs to return
a function call. To ensure that the the return from LLMs is valid,
we perform a check on the returned function call. We supplement
the Task Description with simple additions, such as adding a return
statement (e.g., return 0;), making the code compilable. The compil-
able code, along with the function call generated by LLMs, is then
checked to ensure it compiles. If the code fails to compile, the error
information is fed back to LLMs, prompting LLMs to regenerate a
function call until a valid, compilable function call is produced.

We do not attempt to generate the output corresponding to
this function call to verify the logical correctness of Code_B, as
the reasoning process of LLMs may be flawed. For complex tasks,
the output generated by LLMs may be incorrect, and using it to

check the functional correctness of Code_B could lead to inaccurate
results. While some existing studies suggest using techniques like
voting to filter out incorrect reasoning, this is beyond the scope of
our work. However, in practical scenarios, this step can be replaced
with manually written inputs and outputs, making our method
more extensible. Below is an example that illustrates this process.

Figure 4 shows an example of generating function call based
on the Task Description and verifying its validity. The program-
ming language here is C++, though a similar method applies to
Java. The Task Description includes the problem description and
a function signature. We provide this Task Description to LLMs,
asking LLMs to generate one or more function calls. After receiving
a function call, here is “find_closest_elements(1.0, 2.0, 3.0, 4.0, 5.0,
2.2); ”, we construct a code snippet named Test Code that includes
the function signature and the function call. Wemodify the function
signature to complete the function, then add a main function to call
the “find_closest_elements” function, using the generated function
call. We check the syntax of the Test Code to determine whether
the generated function call is valid. If no errors are found, the func-
tion call is considered valid; otherwise, the error information is
sent back to LLMs, prompting it to regenerate the function call
until a valid function call is produced. This process of generating
valid function call from the Task Description is simple for LLMs,
particularly because we’ve incorporated error correction, which
ensures successful generation in all of our experiments.

3.2.2 Syntax Check and Repair. Finally, we use the valid function
call generated in the previous step to check the syntax of Code_B,
aiming to reduce syntax errors introduced by LLMs. Similar to the
previous step, we concatenate Code_B with the valid function call
and verify whether the combined code can be compiled. If the code
compiles successfully, we take the resulting Code_B as the final
output. If the code fails to compile, MetaCoder collects the error
messages from the compiler.

MetaCoder then appends the error messages to the context of
the conversation and prompts LLMs to modify Code_B to address
the syntax errors. The modified code undergoes the same syntax
check. This process continues until the code compiles successfully
or the maximum number of iterations is reached. To prevent exces-
sive computational overhead, we set a maximum loop limit, and
stop the process if the number of repair times exceed this limit. We
also check the error messages before adding them to the context. If
any error message exceeds a certain length, we truncate it to avoid
surpassing the context limit. We do not perform any additional
processing on the error information, such as asking LLMs to cre-
ate a modification plan or summarize the error information based
on the errors, as we believe the error messages contain sufficient
information. Current LLMs are capable of effectively interpreting
and using this information to fix the errors.

4 EXPERIMENTAL DESIGN
To evaluate MetaCoder, we conducted a comprehensive experiment.
This section outlines our experimental design.

4.1 Research Questions
We focus on the following research questions to assess the perfor-
mance of MetaCoder:
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Table 1: Selected LLMs. We choose several LLMs from
four companies. These LLMs have different parameters.

Company Model Size Release Date

OpenAI GPT-3.5 - November 2022
GPT-4o - May 2024

Meta AI Llama 3.1 70B July 2024

Alibaba Cloud Qwen 2.5

7B September 2024
14B September 2024
32B September 2024
72B September 2024

DeepSeek

DeepSeek V2.5 236B September 2024

DeepSeek R1

7B January 2025
8B January 2025
14B January 2025
32B January 2025

* We lack the parameter for GPT-3.5 and GPT-4o because
OpenAI has not open-sourced them.

* Qwen 2.5 was released in May 2024, and was open source
in September 2024.

RQ1: What is the effectiveness of our method? In this re-
search question, we investigate whether MetaCoder can improve
the code generation performance of LLMs for low-proficiency lan-
guages. We compare MetaCoder’s performance against other meth-
ods by applying it to multiple LLMs, with Python guiding the gen-
eration of C++ and Java code.

RQ2: What is the effectiveness of each component of our
method? This research question explores the importance of each
component in MetaCoder. We examine the impact of removing spe-
cific components, such as Python solution generation, the summary
of Python solution, and syntax check.

RQ3: What is the cost of our method? In this research ques-
tion, we assess the cost introduced by MetaCoder. We calculate the
computational resources required to generate code with MetaCoder
and compare it to the cost of baseline methods.

RQ4: Detailed analysis. How much influence will the granu-
larity of summary have on the results? What is the effectiveness of
our method in the real world? Can our method be combined with
other methods?

4.2 Selected LLMs
Numerous LLMs are available for code generation. However, Meta-
Coder requires LLMs to possess a high level of contextual under-
standing and conversational abilities. LLMs without instruction
fine-tuning (e.g., InCoder[21] and CodeGen[32]) are not suitable
for our approach. For our experiments, we selected several repre-
sentative models from both proprietary and open-source categories,
as Table 1 shows. These models include: GPT-3.5, GPT-4o, Llama 3.1
Instruct, Qwen 2.5 Instruct, DeepSeek V2.5, and DeepSeek R1. These
models were chosen to evaluate the effectiveness of our approach
across a range of different LLMs.

4.3 Benchmarks
Initially, we planned to conduct experiments using two public code
generation benchmarks: HumanEval-x[44] and MBXP[9]. However,

during the experimentation process, we found several issues with
MBXP, including semantic ambiguity and errors in some test cases.
Given our limited resources, it was not feasible to fully curate this
dataset, which led to its abandonment. As a result, we decided to
focus on the HumanEval-x benchmark.

HumanEval-x, proposed in 2023, is designed to evaluate multi-
language code generation capabilities. This benchmark helps mit-
igate overfitting due to data leakage by including a diverse set
of problems. HumanEval-x supports five programming languages:
Python, C++, Java, JavaScript, and Go. Each language subset con-
tains 164 problems, each with a task description, function signature,
and test cases. The task descriptions are accompanied by 3 to 4 test
cases. For our experiments, we used the C++ and Java subsets.

Although HumanEval-x also has some issues, such as errors
in the example test cases of CPP/47, we were able to fix them
easily. In our experiments, we used only one dataset, HumanEval-x,
which may raise concerns about the generalizability of our results.
While there are many code generation benchmarks available, most
are limited to a single programming language. Currently, there is
a lack of multilingual code generation datasets, so we chose the
most widely used one from the available datasets to maximize the
generalizability of our results.

4.4 Evaluation Metrics
In line with previous research[13, 15, 32, 44] in code generation, we
use the pass@k metric to evaluate the performance of MetaCoder.
Specifically, for each code generation task, we have LLMs generate
𝑘 pieces of code. If any of the generated codes passes all test cases,
the task is considered successfully completed. The pass@k score is
then calculated as the percentage of tasks that were successfully
completed out of all tasks. A higher pass@k value indicates better
performance in generating correct code.

Previous work[9, 13, 15, 26] has demonstrated that the standard
pass@k metric can exhibit high variance. To address this, an unbi-
ased version of pass@k was proposed. Following this approach, we
generate 𝑛 codes (where 𝑛 > 𝑘) for each task and count the number
𝑐 of codes that pass the test. The unbiased pass@k is then computed
using the following formula:

pass@𝑘 = E
Problems

[
1 −

(𝑛−𝑐
𝑘

)(𝑛
𝑘

) ]
(1)

Previous code generation studies have employed text similarity-
based metrics, such as BLEU[34]. However, these metrics were
designed for evaluating natural language generation and are not
well-suited for assessing the correctness of code. As such, we omit
these metrics in our experiments.

For our experiments, we focus on pass@1, generating 5 samples
for each task (i.e., 𝑘 = 1 and 𝑛 = 5).

4.5 Comparison Baselines
To evaluate the effectiveness of our method, we selected three
widely-used prompting methods, one self-repair method, and one
multi-agentmethod as baselines: Zero-Shot[15], Few-Shot[15], Zero-
Shot CoT[23], INTERVENOR[39], and Self-Collaboration[18].
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Table 2: The Pass@1 (%) of MetaCoder and baselines on HumanEval-X. The numbers in green denote MetaCoder’s relative
improvements compared to Zero-Shot.

GPT 3.5 GPT 4o DeepSeek V2.5 Llama3.1 70B Qwen2.5 72B
C++ Java C++ Java C++ Java C++ Java C++ Java

Zero-Shot 66.22 64.27 84.63 87.2 82.56 81.95 73.78 72.2 85.98 86.59
Few-Shot 60 67.68 80.98 85 85.37 83.54 78.05 78.65 86.58 85.37

CoT 64.51 66.34 84.39 85.73 86.59 87.2 76.22 81.1 85.98 86.58
INTERVENOR 66.95 71.95 84.02 88.41 83.41 80.73 71.95 74.27 88.41 85.98

Self-Collaboration 72.56 69.51 85.98 90.85 83.54 85.24 75.61 76.22 90.24 89.02
MetaCoder 74.89 74.76 87.2 85.49 86.59 86.34 80 78.65 86.58 87.8

Relative Improvement 13.09%↑ 16.32%↑ 3.04%↑ -1.96%↓ 4.88%↑ 5.36%↑ 8.43%↑ 8.93%↑ 0.7%↑ 1.4%↑

Qwen2.5 32B Qwen2.5 14B Qwen2.5 7B DeepSeek R1(C++)
C++ Java C++ Java C++ Java 7B 8B 14B 32B

Zero-Shot 78.9 74.02 72.2 77.44 68.29 69.39 47.93 50.61 54.88 53.05
MetaCoder 84.76 86.59 73.54 79.63 71.95 71.59 63.41 62.8 80.49 81.1

Relative Improvement 7.43%↑ 16.98%↑ 1.86%↑ 2.83%↑ 5.36%↑ 3.17%↑ 32.3%↑ 24.09%↑ 46.67%↑ 52.87%↑

4.6 Implementation Details
Our experimental setup is as follows:

For LLMs, we set the temperature to 0.2 and the top-p to 0.95
across all experiments. For the R1 models, the maximum token limit
was set to 32,768. For the non-R1 models, the maximum token limit
was set to 1,024. Other parameters, such as frequency penalty, were
left at their default values. For the R1 models, we used Ollama to
load its q4_k_m quantized version. For the Llama 3.1 model, we
used the complete unquantized version and loaded it in bfloat16
format. Other models use APIs to gain access.

For the prompts, we included format requirements for all code
generation tasks, such as adding special symbols before and after
the code, to ensure the complete code can be obtained later. we
selected two examples, humanevalx/0 and LeetCode 3111, to serve
as examples for Few-shot and MetaCoder. In other experiments, we
did not add examples to the prompts.

5 RESULT
In this section, we report and analyze the experimental results for
each research question.

5.1 Effectiveness of Our Approach
We conducted experiments using several LLMs on the HumanEval-
x and compared the results with baseline methods. The Pass@1
are shown in Table 2. If we consider the table alone, MetaCoder
appears to perform significantly well on DeepSeek R1. However,
there is a misunderstanding here. Therefore, we will categorize the
discussion based on whether the model is the R1 version.

5.1.1 Non-DeepSeek R1 series models. As evidenced by the results
in Table 2, MetaCoder improves the performance of generating C++
and Java code across multiple LLMs, with significant improvement
over existing methods. Compared with other baselines, MetaCoder
generally outperforms existing methods, except in a few cases, such
as with GPT-4o when generating Java code.

Notably, the largest improvements are observed in the GPT-
3.5 and Llama 3.1 70B models. For C++ code generation, GPT-3.5

improved from 66.22% to 74.89%, a gain of 13.09%, while Llama 3.1
70B increased from 73.78% to 80%, with an improvement of 8.43%.
For Java code generation, GPT-3.5 increased from 64.27% to 74.76%,
an improvement of 16.32%, and Llama 3.1 70B improved from 72.2%
to 78.65%, with an improvement of 8.93%. In comparison, these two
models nearly achieved accuracies of 75% and 80% respectively,
indicating that MetaCoder brings the performance of generating
C++ and Java code closer to that of Python generation for these
models (75% and 80.5%). The performance decline with the GPT-4o
model, specifically when using MetaCoder to generate Java code,
may be attributed to a pre-designed prompt that was not suitable
for this model.

What surprised us is DeepSeek V2.5, which achieved the best
results when using CoT rather than other methods. We conducted
further analysis of this model’s output and found that, compared
to other models, it tends to generate longer natural language expla-
nations when producing code. It is possible that CoT triggered its
capabilities, enabling the model to analyze the task in more details
and provide more effective outputs.

On smaller models, MetaCoder led to accuracy improvements,
but the improvements are less pronounced. For the 7B and 14B
models of Qwen 2.5, the performance enhancement is only about
3%. On the 32B model, there are significant improvements of 7.43%
and 16.98%, respectively. We hypothesize that this discrepancy is
due to the smaller models’ difficulties in handling extensive context
and their limited capacity due to fewer parameters.

5.1.2 DeepSeek R1 series models. For the distilled models in the
DeepSeek R1 series, it is important to note that their effectiveness
might be overstated. The best improvement observed was 52.87%,
which may not accurately reflect their true capability. This dis-
crepancy arises because, during Zero-Shot generation tasks, these
distilled models often fail to generate C++ or Java code as required
by the problem description. Instead, they frequently output Python
or JavaScript code. This issue is particularly pronounced when gen-
erating Java code, which led us to exclude Java generation attempts
for these models. This suggests that the results for this segment



Internetware ’25, June 20–22, 2025, Trondheim, Norway Chen et al.

Table 3: Component analysis. For the Python code and Python summary in Figure 3, as well as the Test and Repair in Figure 1,
we removed one element at a time and recorded the Pass@1.

GPT 3.5 GPT 4o DeepSeek V2.5 Llama3.1 70B Qwen2.5 72B
C++ Java C++ Java C++ Java C++ Java C++ Java

Zero-Shot 66.22 64.27 84.63 87.2 82.56 81.95 73.78 72.2 85.98 86.59
- Python Solution 73.66 74.02 85.98 85.61 84.76 85.98 77.93 78.17 85 86.84
- Python Summary 71.34 73.78 86.71 84.51 85.98 84.39 76.22 77.44 83.41 84.27
- Test and Repair 72.56 71.95 86.59 85.12 85 85.37 76.71 76.45 86.21 86.34
MetaCoder 74.89 74.76 87.2 85.49 86.59 86.34 80 78.65 86.58 87.8

Table 4: Output tokens per task. The output tokens consumption of different models under different methods.

GPT 3.5 GPT 4o DeepSeek V2.5 Llama3.1 70B Qwen2.5 72B
C++ Java C++ Java C++ Java C++ Java C++ Java

Zero-Shot 90.8 177.26 274.74 572.6 673.27 737.4 465.9 542.93 582.32 614.86
Few-Shot 109.35 113.54 171.44 130.39 195.15 167.01 144.62 118.43 253.71 136.36

CoT 302.41 327.21 499.53 545.56 507.34 540.45 364.76 370.88 568.46 407.27
INTERVENOR 99.23 190.32 292.62 611.46 681.23 815.26 510.07 545.45 614.49 627.62

Self-Collaboration 730.81 750.21 1231.91 1833.1 1606.19 1556.74 919.16 908.2 1697.06 1608.95
MetaCoder 396.61 421.35 690.47 824.3 738.02 848.67 438.99 459.13 637.67 609.41

may be inflated—while these models may be capable of solving the
given programming tasks, they do not always produce the correct
programming language as output.

This issue is less common with the 70B distilled model and the
671B R1 model, both of which already achieve over 95% Pass@1.
For these high-performing models, our approach provides limited
room for further improvements.

To summarize, our method significantly improves the perfor-
mance of generating C++ and Java code on LLMs, in some cases
bringing their performance to a level similar to that of Python code
generation. However, on smaller models, while there are improve-
ments, the range of improvement is relatively small, which may be
related to the model’s ability to handle complex contexts.

5.2 Effectiveness of Components
In this section, we evaluate the effectiveness of each component of
our design. First, we assess the influence of Python code on the final
output when generating C++ code. Next, we investigate whether
the Python Summary affects the final output when generating C++
code. Finally, we examine the impact of the syntax check on the
final result. The results are shown in Table 3.

In our ablation study, we carefully analyze the contribution of
each component to the overall performance of our proposed ap-
proach. Our analysis reveals that the Python summary plays a
crucial role in enhancing the effectiveness of the generated code.
This holds true across all tested models, indicating that summa-
rization helps distill the core functionality, thereby guiding the
generation process more accurately. However, the presence of the
original Python code still contributes positively to the final output.
The synergy between the summary and the Python code highlights
the importance of both elements in our framework, demonstrating
how they complement each other to achieve superior results.

Regarding the Test and Repair phase, our findings indicate that
while this step is essential for ensuring code quality, its impact
varies significantly across different models. For advanced models
such as GPT-4o, DeepSeek V2.5, and Llama 3.1, the improvement
in accuracy from incorporating syntax checks is relatively modest.
For example, the accuracy of C++ code generated by GPT-4o only
increased from 86.59% to 87.2%, while for Java code, it improved
from 85.12% to 85.49%, which is hardly a significant improvement.
This suggests that for more sophisticated models, which already
possess a high level of syntax understanding, additional syntax
check may offer less reward.

This comprehensive evaluation helps us understand which com-
ponent of our approach contribute most significantly to its effective-
ness and identifies direction that further optimization or research
may be beneficial.

5.3 Cost Evaluation
In this section, we quantify the overhead associated with Meta-
Coder, focusing on one primary metric: the average output tokens
consumption. We choose to account for output tokens consumption
rather than input tokens consumption because the cost associated
with output tokens is relatively higher. On many platforms, the
cost ratio between output tokens and input tokens is typically 4:1.
Therefore, it makes more sense to focus on the consumption of
output tokens. The results are shown in Table 4.

The results show that our method requires more output tokens
than Zero-Shot, as MetaCoder needs at least three LLM outputs
to complete a code generation task. Despite this increase, it is im-
portant to note that MetaCoder consumes far fewer output tokens
than Self-Collaboration, while achieving better performance.

We also observed some interesting trends: most models consume
more output tokens in Zero-Shot than in Few-Shot, particularly
DeepSeek V2.5. This is because, when using Zero-Shot, models
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Table 5: The Pass@1 of MetaCoder at different summary granularities. Since we cannot directly control the granularity of the
generated summary, we chose to include a word limit in the prompt to achieve a similar effect.

GPT 3.5 GPT 4o DeepSeek V2.5 Llama3.1 70B Qwen2.5 72B
C++ Java C++ Java C++ Java C++ Java C++ Java

MetaCoder 74.89 74.76 87.2 85.49 86.59 86.34 80 78.65 86.58 87.8
50 words 72.93 72.56 83.66 83.17 86.22 84.63 78.41 76.83 86.22 85.37
100 words 75.24 74.39 86.46 85.86 85.98 85.98 80.13 77.93 85.85 88.54
200 words 74.39 73.9 87.32 85.24 85.37 86.59 79.64 78.29 85.98 88.05

Table 6: The Pass@1 of MetaCoder in the real world. By introducing a filter in Figure 5, we can simulate real-world scenarios.

GPT 3.5 GPT 4o DeepSeek V2.5 Llama3.1 70B Qwen2.5 72B
C++ Java C++ Java C++ Java C++ Java C++ Java

MetaCoder 74.89 74.76 87.2 85.49 86.59 86.34 80 78.65 86.58 87.8
MetaCoder + Filter 81.59 81.22 90.73 91.22 90.85 90 86.58 86.58 91.46 92.07

Qwen2.5 32B Qwen2.5 14B Qwen2.5 7B DeepSeek R1(C++)
C++ Java C++ Java C++ Java 7B 8B 14B 32B

MetaCoder 84.76 86.59 73.54 79.63 71.95 71.59 63.41 62.8 80.49 81.1
MetaCoder + Filter 90.12 91.46 85.12 88.41 80.73 85.85 71.34 74.39 84.76 85.37

Table 7: The Pass@1 of MetaCoder combined with other methods. These methods are used for generating Python code.

GPT 3.5 GPT 4o DeepSeek V2.5 Llama3.1 70B Qwen2.5 72B
C++ Java C++ Java C++ Java C++ Java C++ Java

MetaCoder 74.89 74.76 87.2 85.49 86.59 86.34 80 78.65 86.58 87.8
+ INTERVENOR 76.22 78.65 87.2 89.02 85.24 87.2 80.73 83.54 84.39 88.05

+ Self-Collaboration 78.05 80 86.59 89.02 86.59 88.41 81.1 83.54 85.24 90.24
+ Answer 82.93 91.46 92.07 94.51 91.23 93.29 89.02 93.29 90.85 93.29

typically generate not only code solutions but also explanations
of the code and test cases, which are usually longer in Java, lead-
ing to higher costs. In contrast, other methods, such as Few-Shot,
often provide examples, which helps reduce the overall token con-
sumption. We also tested the output token consumption of the
DeepSeek R1 series models. For the DeepSeek R1 model, output to-
ken consumption is particularly high, which exceeded 3000 tokens
on average. DeepSeek R1 7B consumes the most tokens, reaching an
astonishing 5265.53. This is due to the extensive "thinking" process
before outputting results. The 7B model is more likely to reach
the maximum output limit, as it often repeats outputs or overuses
examples.

In conclusion, although our method requires higher token con-
sumption than Zero-Shot, the trade-off is justified by its superior
performance and more efficient resource utilization.

5.4 More Detailed Research
In this section, we study the impact of summary granularity on
MetaCoder, the performance of MetaCoder in the real world, and
the performance of combining MetaCoder with other methods.

5.4.1 Change the granularity of summary. In this section, we ex-
plore the influence of summary granularity on the results. Since we
cannot directly control the granularity of the summary generated

by LLMs, we instead control the length of the summary. The more
words LLMs generates, the more detailed the summary becomes.
We provide specific instructions in the prompt, specifying that the
summary should be within 50 words, 100 words, or 200 words, as
we found that the summaries generated by GPT-3.5 mostly fall
within this range.

Our results, shown in Table 5, demonstrate that as the length of
the summary increases, the accuracy of the code generated by each
LLM generally improves. However, for specific tasks and models,
selecting the appropriate level of granularity remains crucial and
can be challenging. For example, when generating C++ code with
GPT-3.5, a 100-word limit works better, whereas a 200-word limit
is more effective when generating Java code with Llama 3.1.

5.4.2 Real world performance. In this section, we discuss the practi-
cality of our method in real-world scenarios. After completing code
on a competition website[5, 6] or during the production process, it
is common to conduct tests to verify whether the code is correct.
To simulate this process, we introduce test results. First, we have
LLMs generate C++/Java code directly, then test it. If the test passes,
the generated code is output. If it fails, we apply MetaCoder to this
task. In this process, we do not expose any test cases. Essentially,
we have added a filter, as shown in Figure 5. When LLMs generates
incorrect code, we use MetaCoder to address the task.
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Task 
Description

C++/Java 
Solution

PassErrorMetaCoder

Filter

Figure 5: A filter before using MetaCoder. The filter first
assess whether LLMs can directly generate the correct code.
If they cannot, then use MetaCoder

Our results, shown in Table 6, demonstrate that after adding the
filter, the accuracy improves significantly. This also highlights an
important issue: during the implementation of our method, some
tasks that LLMs can do right are finally wrong. This is a challenge
worth considering and something we aim to address in future work.

This demonstrates that our method is highly practical and can
enhance the diversity of LLM-generated code, incorporating more
correct answers into the generation process. It truly unleashes the
potential of LLMs for code generation.

5.4.3 Combine with other methods. In this section, we will discuss
the effectiveness of combining MetaCoder with other methods.
When generating Python code in the first step, we can use other
techniques to enhance the accuracy of the Python code, which in
turn improves the accuracy of the final generated code. To test the
effectiveness of combining other methods, we use INTERVENOR
and Self-Collaboration as the first steps in this process. Additionally,
to evaluate the upper limit of our method, we include the Python
answer as the first step.

The results, as shown in Table 7, indicate that our method has
strong potential when combined with other methods. By directly
using the answer as Python code, we found that the upper limit of
MetaCoder is very high. For instance, GPT-4o achieved an accuracy
of 94.51% when generating Java. MetaCoder also proved effective
when combined with other methods, although the improvement
was not as significant as when directly using the Python answer.
This suggests that additional strategies may be needed to further
enhance the effectiveness of MetaCoder, which will be a direction
for our future work.

6 DISCUSSION
In this section, we will discuss the applicability of MetaCoder, its
current limitations, and our future work.

First, MetaCoder has limited applicability for code generation
at the code repository level. Due to the context length limitation
of LLMs, generating code at this level often requires additional
contextual information. While methods like Retrieval-Augmented
Generation (RAG) can help handle information beyond the model’s
context window, MetaCoder is also constrained in such scenarios.
However, if code generation at the repository level can be decom-
posed into several independent tasks, MetaCoder could still prove
effective.

Second, the effectiveness of MetaCoder may be lower for smaller
models. This is because the contextual understanding ability of
smaller models is not as strong as that of larger models, making it

difficult for them to process information comprehensively when
dealing with long texts. In fact, this issue is common across many
models. When the length of the prompt exceeds the model’s con-
text window, LLMs tend to selectively process certain pieces of
information while ignoring others.

Finally, our future work will focus on improving MetaCoder’s
performance, such as determining the appropriate level of granu-
larity for summary, preventing MetaCoder from making mistakes
on tasks LLMs can directly handle, and finding more effective ways
to combine MetaCoder with other methods.

7 RELATEDWORK
In this section, we outline the most relevant directions of research
related to our work.

Code generation is one of the most prominent topics in both
software engineering and artificial intelligence research today. In
recent years, LLMs have been extensively studied for code gen-
eration tasks. The development of using LLMs for coding tasks
accelerated rapidly after CodeBERT[20] first linked code tasks with
pre-trained models. This progress further gained momentum with
the release of ChatGPT, which sparked widespread interest among
researchers in applying LLMs to code generation tasks.

To date, numerous proprietary and open-source LLMs have been
applied to code generation, including notable models such as GPT-
4[8], Claude 3.5 Sonnet[2], and Llama 3.1. These LLMs exhibit strong
natural language understanding and reasoning capabilities, often
achieving outstanding results in code generation tasks. For exam-
ple, on the HumanEval dataset, Claude 3.5 Sonnet achieves an
accuracy of 92%, while Llama 3.1 and GPT-4 reach accuracy rates
of 89% and 90.2%, respectively. However, it is still a challenge to
use LLMs to generate entirely correct code for complex require-
ments. To enhance the performance of LLMs in code generation,
several methods[10, 16, 24, 30, 42] have been proposed. These in-
clude prompting techniques, fine-tuning techniques, self-repair
techniques, and multi-agent collaboration.

Prompting techniques[26, 40] propose different prompting tech-
niques to help LLMs better analyze requirements and generate code.
The SCoT prompting technique[26] instructs LLMs to generate a
structured chain of thought (SCoT) using program structures such
as sequences, branches, and loops. LLMs then generate the code
based on the SCoT.

Fine-tuning techniques[25, 28, 37] fine-tune LLMs to make it
more suitable for code generation tasks, such as UNICODER[37].
Found that CoT has different logical structure and expression form
from code, Sun et al.[37] introduced universal code UniCode as
an intermediate representation, collected data sets and fine-tuned
LLMs, which improved the performance of LLMs in code generation
tasks. Ma et al.[28] introduce the code data at the pre-training stage,
instruction-tuning stage, and both of them respectively to explore
the impact of code data.

Self-repair techniques[17, 29, 33, 43] use external tools to cor-
rect the code according to the feedback errors, making the code
generation more accurate, such as INTERVENOR[39]. According
to the feedback from external tools, Wang et al.[39] asked LLMs
to generate suggestions for modifying the code, and modified the
code according to the suggestions.
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Multi-agent collaboration, such as Self-Collaboration[18], use
multi-agent to verify the generated code agent and improve the
quality of the generated code. Dong et al.[18] proposed a framework
of self-collaboration, and built a team composed of analyst, coder
and tester to solve the code generation task collaboratively.

While these methods have proven effective in improving the
performance of LLMs in code generation, there remains a significant
performance gap across different programming languages. This is
because these approaches do not specifically address the languages
in which LLMs are less proficient. Our method seeks to bridge
this gap by using programming languages in which LLMs excel to
guide the generation of those in which they are less skilled. In this
process, we leverage natural language from multiple perspectives
to reinforce the guiding effect and unlock the potential of LLMs in
code generation.

8 CONCLUSION
In this paper, we propose a new code generationmethod—MetaCoder,
which leverages the strengths of LLMs in high-level languages to
enhance code generation in low-level languages. Additionally, Meta-
Coder integrates an iterative verification mechanism to detect and
correct syntax errors in the generated code, further improving accu-
racy. Extensive experimental results demonstrate the effectiveness
and versatility of MetaCoder. In summary, MetaCoder offers an
effective approach to automatically generate code. This innovative
method has the potential to significantly improve the quality of
generated code, reduce human intervention, and accelerate the
development of complex software systems.
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