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 A B S T R A C T

The rapid development of Solid State Disks (SSDs) drastically reduces device latency from 100 μs to around 
10 μs. However, performance advertised is not always performance delivered. Background operations (e.g., 
garbage collection and wear leveling) inside the SSDs now may severely influence the performance. In addition, 
SSDs are also susceptible to fail-slow failures. Traditionally, studying SSD-based stack focuses on understanding 
the SSD internal behaviors or discussing the impacts of software stack on throughput.

In this paper, we conduct an extensive study on software stack atop the low-latency SSDs, especially under 
device latency variations. We build 𝜇Scope to overcome two major challenges, including achieving fine-grained 
latency injection and low-overhead monitoring, in profiling. Via 𝜇Scope, we manage to obtain three major 
lessons in access patterns, consistency trade-offs and consecutive performance variations which shall benefit 
developers for further optimizations.
1. Introduction

Flash-based Solid State Disk (SSD) is a staple in today’s computing 
on multiple fronts including personal mobile devices to cloud-scale 
data centers. The competitive performance (e.g., 6 GiB/s throughput 
with PCIe 4.0 support), the low energy draw (e.g., 10 times less than 
disks [1]) and the high storage density (e.g., 100 GiB QLC-based SSD) 
make the SSD a favorable choice.

Nevertheless, to fully exploit the power of SSDs is non-trivial. Previ-
ous work [2–4] have shown that the performance, mainly throughput, 
of a SSD-based storage stack can be greatly influenced by the SSD 
design, such as internal parallelism and NAND properties. In addition, 
recent research [5] also focus on studying the throughput variation 
of SSD-based stack under different file system configurations. These 
studies have helped developers to further understand the nature of SSDs 
and motivated subsequent optimizations in development and tuning.

Still, one significant topic has been left untouched, the software 
stack behaviors (e.g., file system, kernel block layer and driver) under 
SSD’s latency variations. The importance of such a study is two-fold. 
First, SSD are becoming increasingly faster. For example, the newly 
emerged Ultra-low Latency (ULL) SSDs have driven the average latency 
to the sub-10 μs level [6,7]. Such improvement fundamentally changes 
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the landscape as we can no longer treat such SSDs as slow storage 
devices behind the IO Wall. Instead, recent studies [8,9] indicate that 
software stack processing now take nearly same amount of time as the 
device during the IO processing. This motivates us to investigate the 
influence of software stack behaviors on the latency which may be 
regarded as noises when running on slower devices.

Second, SSD itself can also cause widespread and severe latency 
variation. It is well-known that SSD’s internal activities (e.g., garbage 
collection, wear leveling and data integrity checks) can severely impact 
IO processing, leading to high tail latency [10–15]. Moreover, SSDs 
are also susceptible to a new type of failure, called Fail-slow fail-
ure [16–18], where the storage device is still functioning but with much 
degraded performance. In this case, studying the software handling and 
reaction can be helpful for stack’s end-to-end robustness.

Unfortunately, evaluating the software stack behavior is not
straightforward. First, existing analytical framework and methodology 
(e.g., ltrace [19] and strace [20]) focus on the end-to-end perfor-
mance, thereby cannot provide an in-depth and fine-grained analysis 
on each layer of the software stack. In addition, if we simply use 
instrumentation-based solutions to capture latency variations, it is still 
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 data mining, AI training, and similar technologies. 
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inaccurate as monitoring itself can introduce extra latency. Moreover, 
even if we manage to obtain a low-overhead monitoring method, the 
SSD can be unstable (e.g., background activities or suffering fail-slow 
failures) and thus lead to incorrect conclusions.

In this paper, to study the impact of SSD’s latency variation in stor-
age stack, we build 𝜇Scope, an eBPF-based [21,22] fault injection tool. 
There are two major components. First, we, based on RamDisk [23], 
build a simulated SSD, to ensure the target device can run with con-
trolled delays in a deterministic fashion. We have included frequency, 
amplitude and distribution patterns of fault injection to simulate a wide 
range of SSD behaviors.

Moreover, we devise an eBPF-based monitoring framework to
achieve low-overhead and fine-grained latency monitoring across all 
layers in software stack. Specifically, it performs real-time monitoring 
of the storage stack related functions in the kernel at the nanosecond 
level. We have set up interfaces for users, which can easily perform 
deeper performance monitoring on specified functions.

With 𝜇Scope, we evaluate three typical benchmarks in Filebench
[24] extensively under a wide variety of setups, including file systems 
and configurations. Through analysis, we identify the following major 
observations:

• Write-intensive workloads exhibit greater sensitivity to latency 
variation compared to read-intensive ones. In the presence of 
latency variation, the slowdown experienced by write-intensive 
tasks (9.39%) significantly exceeds that of read-intensive tasks 
(3.34%). This is because write operations involve more disk ac-
cess than read operations, increasing the chances of latency vari-
ation events. Furthermore, the latency of software stack increase 
in write operations is 11.3% to 29.6% higher compared to read 
operations under different configuration conditions. Employing 
a thinner storage stack, like using storage performance develop-
ment kit(SPDK), can effectively mitigate the impact. The ratio of 
slowdown decrease from 11.08% to 3.06% after equipped with 
SPDK.

• Configuration items related to consistency and performance de-
cide the dependence between software executions and underlying 
I/O. Thus, the dependence can increase the impact of SSD’s 
latency variation(i.e. SSD’s latency variation) on software stack. 
Moreover, different configuration item values may lead to an 
impact gap of more than 10%. Unlocking read/write order rela-
tionships in the kernel helps improve storage stack performance. 
However, only software-level modifications have not fundamen-
tally avoided the impact of SSD’s latency variation. Performance 
degradation still occurs during the processing the orders.

• Various latency variation patterns result in different impacts on 
the software stack. As the block layer queue temporarily accu-
mulates SSD’s latency, continuous slow I/Os negatively impact 
the software stack’s performance considerably. Furthermore, in 
situations with the same occurrence ratio, the software stack 
delay caused by continuous slow I/Os increases by 5% to 10% 
more than that caused by random slow I/Os. Focusing on the 
prediction of continuous slow I/Os should become the key of 
solving the problem. Compared to the node switching commonly 
used in current distributed systems, the disk switching delay is 
lower, making it a better solution to mitigate the impacts.

Our paper has three key contributions:

• To the best of our knowledge, we are the first to provide a detailed 
impact analysis of SSD’s latency variation on software stack. We 
believe our study paves the way towards the better understanding 
on impact of SSD’s latency variation.

• We build an eBPF-based fault injection tool–𝜇Scope. It is used 
to analyze storage stack robustness against SSD’s latency varia-
tion. We publish 𝜇Scope on Github: https://github.com/u-Scope/
uScope.
2 
• We use 𝜇Scope to conduct a comprehensive study on the impact 
of SSD’s latency variation on software stack. Also, we discuss 
the relationship between the impact and workload, file system, 
and latency variation patterns. After analysis of results, we offer 
insights into the root causes of SSD’s latency variation’s impact 
on software stack and provide suggestions for users.

The rest of the paper is organized as follows: Sections 2 and 3 
introduce the background and motivation of our research. Section 4 
introduces 𝜇Scope we develop. Section 5 examines the experimental 
settings. Then, Section 6 evaluates device latency variation effect, ana-
lyzes its root causes and provides suggestions. Next, Section 7 discusses 
the experimental limitations, while Section 8 explores related work. 
Finally, we conclude our work in Section 9.

2. Background

2.1. Storage stack

With the iteration of Linux versions, the complexity of storage stacks 
has also increased. The current Linux storage stack can be roughly 
divided into the following parts: Virtual File System(VFS), page cache, 
File System(FS), Block Layer, Drivers, and Device [25,26].

The main function of VFS [27] unifies the interfaces of various file 
systems. User mode read and write functions include read, write, readv, 
writev, pread and pwrite [28]. Various file systems have their own 
implementations, and the role of VFS is to unify them into a single 
function name and provide it to users.

In contrast, the page cache [29] mechanism is used to improve per-
formance. When memory resources are not sufficient, the data accessed 
by users will not be discarded, but will be cached in memory. The next 
time the user utilizes the device, rapid in-memory data can be accessed 
without the need for slow storage devices. When the page cache is hit, 
there will be no I/O access to the disk.

Similarly, FS is the file system that manages persistent data. Its 
primary function is to achieve unified disk space management. On the 
one hand, the FS plans disk space uniformly, and on the other hand, 
the FS provides a user-friendly interface for ordinary users.

Additionally, the block layer [30] connects the FS and device driver 
layers. I/O is the basic bio unit in the block layer. The block layer is 
responsible for staging, merging, and determining the order in which 
I/O requests are processed. Hence, the block layer’s soft interruption 
feature handles the work after an I/O request is completed.

Finally, drivers are special programs that enable communication 
between computers and devices, which can be equivalent to hardware 
interfaces.

2.2. Kernel performance monitoring

Kernel performance monitoring technology has always garnered at-
tention. Consequently, different kinds of performance monitoring tools 
for Linux exist. The commonly used existing kernel monitoring tools 
include strace [20], ltrace [19], Ftrace [31], iostat [32] and perf [33].

First, ltrace tracks a process’s library function calls. It lists which 
library functions were called during the process and the time of the 
call. Similarly, strace monitors the time consumption of system calls 
during process execution. It is mainly used to monitor the interaction 
between user space processes and the kernel.

In contrast, Ftrace is an internal tracer designed to enable system 
developers and designers to monitor the occurrences within the kernel. 
It can be used for debugging or analyzing latencies and performance 
issues that occur outside the user-space. One of the most common uses 
of Ftrace is event tracing. Numerous static event points exist throughout 
the kernel that can be enabled via the tracefs file system to monitor the 
occurrences within certain parts of the kernel [31].
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Additionally, iostat is a statistical tool for the I/O system. Iostat 
monitors disk I/O statistics for all disks and file systems and it outputs 
values such as CPU and disk utilization, disk read and write speed, I/O 
request queue length, and waiting time length in the current state.

Finally, perf is a profiling tool built into the Linux kernel source tree. 
It is based on performance events and supports analysis of processor 
and operating system related indicators. Perf can be used for finding 
performance bottlenecks and locating hot codes.

2.3. Fail-slow devices

Fail-slow device is used to describe a hardware that is still running 
and functional but in a degraded mode [16], slower than its expected 
performance. The Fail-slow failure is a hardware problem of great con-
cern, especially in SSD. Current research points out that the probability 
of Fail-slow in SSD is 6.05× higher than that in HDD [17].

There are various reasons for SSD Fail-slow. On one hand, there are 
internal root causes, such as firmware bugs, heavy garbage collection, 
and suboptimal wear-leveling. On the other hand, hot temperature, 
power and so on can be attributed to external causes. The detailed 
reasons are listed in the previous work [16].

The appearance of tail latency is mostly caused by the Fail-slow 
in the SSD. In the test of a real SSD, the latency will reach 2.5× of 
the average latency at the 99% percentile, even 20× at the 99.9% 
percentile [11]. Such high tail latency is unacceptable to users. Be-
sides, Fail-slow is likely to cause cascading reaction. Existing works 
offers anecdotes about the serious results caused by Fail-slow, which 
motivates us to carry out this work. There are practical examples to 
prove that a Fail-slow drive can significantly degrade the performance 
of the entire RAID based on SSDs [10]. Some work has also proposed 
the possibility of Fail-slow to fail-stop, which can bring unpredictable 
consequences such as system collapse [16]. As a kind of severe la-
tency variation within hardware, Fail-slow may seriously affect the 
performance of the software or damage the normal operation of the 
software.

3. Motivation

Obtaining a stable storage device. Prior work [16,17] points out that 
compared to hard disk drive (HDD), latency variation in NVMe SSD is 
much more widespread and frequent, and can significantly degrade per-
formance. These problems motivate us to ask a question: Are the soft-
ware stacks resilient to device-level severe latency variations (i.e., Fail-
slow failures)?

We attempt to directly study the software stack under SSD perfor-
mance. We encounter difficulties in monitoring the real SSD. First, SSD 
is a black box. By nature, its latency is beyond our control due to 
its internal activities (e.g., garbage collection). Note that, host-aware 
SSDs (e.g., open-channel SSD) enables users with better management 
but can suffer from excessive monitoring overhead, thereby yielding 
untrustworthy results.

Therefore, we choose to use simulated SSDs as the testing carrier 
and conduct fault injection to simulate performance fluctuations in 
SSDs. Initially, we attempt to use existing SSD simulation tools such 
as SSDSim [34], SimpleSSD [35] and FEMU [36].

We use Fio [37] to compare and test real and simulated disks. To 
test the latency and bandwidth of random reads and writes on each 
simulated disk, we conduct 10 repeated experiments on each device 
and calculate the average value of each test item. The result is as 
shown in the Table  1. The term ‘‘CPU%+’’ represents the incremental 
increase in CPU utilization after initiating the simulation, compared to 
its utilization prior to the simulation’s start.

These tools all simulate the functions of SSDs very well. However, 
the implementation of SSDSim is in the user mode. The access path 
to it is different from the actual disk access. It cannot help study the 
3 
Table 1
Performance results of real and simulated disks.
 Device Fio results CPU%+ 
 lat (μs) 99.9th lat Bandwidth  
 Samsung 980PRO 37.55 112.96 6370 MB/s –  
 SSDsim 45.59 89.07 6099 MB/s +5.2%  
 SimpleSSD 60.90 189.43 5976 MB/s +9.3%  
 FEMU 40.02 135.88 6023 MB/s +9.2%  
 𝜇Scope-RamDisk 34.50 93.01 6219 MB/s +5.1%  

Table 2
Performance results of different profiling tools.
 Tools Precision Object Latency (μs)
 AVG +  
 baseline – – 45.91 0  
 strace μs System calls – –  
 ltrace μs Library function calls – –  
 iostat – CPU and disks – –  
 Ftrace μs Storage stack functions 48.89 6.49% 
 perf ns Storage stack functions 51.73 12.7% 
 𝜇Scope ns Storage stack functions 49.03 6.79% 

impact of SSD performance on the software stack. In contrast, Simp-
leSSD focuses on implementing the internal logical structure of SSDs, 
thus introducing a delay of 100 μs during operation, which exceeds 
the actual disk latency significantly. So SimpleSSD is not the optimal 
choice for simulating SSDs either. FEMU is a simulation tool capable of 
emulating various operations in SSDs, such as garbage collection and 
wear leveling. It also offers latency and bandwidth characteristics com-
parable to those of real SSDs. However, due to its significant additional 
CPU overhead, it cannot be considered our preferred simulation tool.
Low-overhead profiling. We have also made several preliminary at-
tempts in performance monitoring. There exist a rich set of performance 
monitoring tools for the kernel (introduced in 2.2).

To compare different performance monitoring tools, we use
Filebench [24] to test the commonly used tools in the current kernel. 
The baseline is the performance result of Filebench without using any 
tools. We use the default parameters of Filebench for testing and give 
the results in Table  2. More testing details are explained in Section 6.6.

Strace and ltrace can be used to monitor system calls and library 
function calls during software operation. However, as user monitoring 
tools, they can only provide end-to-end performance and their perfor-
mance monitoring in the kernel storage stack is not sufficient. The main 
objects monitored by iostat are the disk and CPU, which lacks fine-
grained I/O process monitoring. Although Ftrace can track and observe 
functions in the kernel, its accuracy is subtle and insufficient to support 
our performance analysis of low latency software stacks. Specifically, 
Ftrace provides performance measurement accuracy at the microsecond 
level. However, the latency of some functions within the storage stack 
has reached the 100-nanosecond level. Therefore, while Ftrace is useful 
for observing general trends, it is not sufficient for a fine-grained 
analysis of the software stack’s response to SSD’s latency variation. Perf 
is a profiling tool based on eBPF which we expect to use. It meets all our 
requirements for monitoring functionality. Unfortunately, it introduces 
too much overhead because of recording redundant information. This 
is against our purpose of achieving microsecond-level performance 
variations.

4. 𝝁Scope design

In this section, first, we present the design goals and introduce 
the workflow of 𝜇Scope (Section 4.1), and then describe the detailed 
technology including SSD simulation (Section 4.2), slow I/O injection 
(Section 4.3), and the eBPF monitoring system (Section 4.4).
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Fig. 1. 𝜇Scope workflow: evaluate storage stack robustness against SSD’s latency variation. There are eight steps: 1. Load the experimental environment. 2. Simulate devices using 
a RamDisk. 3. Inject slow I/Os as SSD’s latency variation. 4. Choose and run workloads on this disk. 5. Monitor kernel function latency. 6. Compare the results to find performance 
anomalies. 7. Analyze and locate the function with abnormal performance. 8. Add the monitored function to find the root cause.
4.1. Overview

In this study, we aim to analyze the impact of SSD’s latency varia-
tion on storage stack. To achieve this, we have three goals.

Goal I: Obtaining a stable device: Previous studies [16] have 
shown that latency variation problems exists on a large scale in SSDs. 
However, using real devices may not meet the testing requirements. In 
real devices, latency variation is unstable and unmanageable, making 
it difficult for reproduction. Therefore, the optimal choice is simulating 
a stable device.

Goal II: Injecting realistic and controllable slow I/Os: We inject 
slow I/Os into the test device to simulate the occurrence of latency 
variation in real devices. To make the simulation as real as possible, 
multiple indicators such as time, frequency, and latency variation 
pattern are evaluated. Therefore, it is crucial for the root cause analysis 
to generate a controllable and reproducible latency variation.

Goal III: Monitoring kernel storage stack with light overhead:
Monitoring the performance of the storage stack during testing is 
essential. There are currently many tools for kernel monitoring, but not 
under low latency conditions. Also, existing tools have low accuracy 
or heavy load (as introduced in Section 3). Therefore, it is necessary 
to build a high-precision kernel storage stack monitoring with light 
overhead.

In order to achieve these goals, we devise 𝜇Scope. The 𝜇Scope 
workflow can be divided into two parts and eight steps, which are 
displayed in Fig.  1 as follows: The first part is the preparation work 
before testing, including steps 1–3: 1. Load the experimental environ-
ment (file systems) according to the selected parameters. 2. Simulate 
devices using a RamDisk. 3. Inject slow I/Os as SSD’s latency variation. 
The second part is testing and performance monitoring, including steps 
4–8: 4. Choose and run the workloads on this disk. 5. Monitor kernel 
function latency. 6. Compare the results before and after injection 
to find performance anomalies (i.e., performance anomalies refer to 
changes other than an increase in the underlying latency. For example, 
the latency in the ext4 file system layer may increase by 13% after the 
injection delay). 7. Analyze and locate the function with the abnormal 
performance. 8. Add the monitored function.

After the new monitored function is added, the system will monitor 
the kernel function delay in a more fine-grained manner. Similarly, re-
ducing the number of monitored functions is also allowed. Repeat steps
5. to 8. in the monitoring system until the root cause of the abnormal 
performance is revealed. Moreover, adding monitored functions step by 
step minimizes the performance noise caused by monitoring.

4.2. PART I : SSD simulation

According to our previous research (in Table  1), the vast majority 
of simulators are unable to perfectly simulate the operation of real disk 
SSDs. Existing simulators do not meet our demands as one important 
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goal of theirs is to mimic the internal behaviors of SSDs including 
garbage collection, wear leveling and data scrubbing. We, however, 
intend to explore the behaviors of the software stack under SSDs’ 
latency variations. While such latency variations can be caused by the 
disk internal behaviors, they are uncontrollable. Thus, we chose to 
build a stable simulated SSD and apply artificial latency upon it to study 
the software behaviors under various types of latency. So, we expect to 
obtain a stable storage device, which we can treat as a pure SSD that 
does not involve any interfere from garbage collection, wear leveling 
and such intrinsic mechanisms. The problems exposed on such devices 
must also exist in real disks, and maybe more complex. Meanwhile, 
more attention should be paid to observing the impact of software 
stacks instead of the internal implementation of device.

Therefore, we use RamDisk for simulation. We generate a file to 
simulate the device in memory, and then format and mount it like 
normal disks. In this way, read and write operations on the simulated 
device can pass through the same storage stack like real disks.

To achieve a similar effect to the real disk in our simulation disk, 
we used the Fio [37] tool to compare and test the simulation disk with 
the SAMSUNG 980PRO 250G. We applied different workload types in 
Fio, and then performed 1000 runs on the simulated and real disks 
to compare the output results. The result showed that the simulation 
disk runs are faster than those of the actual one under the default 
parameters. This is reasonable because the memory runs faster than 
the SSD disks.

To make our simulation more realistic, we added a small delay to 
the simulation disk to match the speed of the two. After the delay 
injection we performed 1000 runs again. The comparison between the 
simulated disk with added delay and the actual one shows that the 
average delay is almost identical, and the throughput difference is 
within 9%. Notably, the delay percentiles P95 and P99 in the simulated 
disk were reduced by 45%–80% than those in the actual disk. Our 
tests require the artificial injection of the slow I/Os into the test disk. 
Therefore, we must avoid the inherent latency variation’s impact in 
the test disk as much as possible. Thus, Ramdisk is a good simulator. 
The detailed validation of Ramdisk simulation will be presented in 
Section 6.5.

4.3. PART II : Slow I/O injection

To analyze the impact of SSD’s latency variation on the software 
stack in multiple aspects and scenarios, the injection of slow I/Os, 
which is used to simulate tail latency in the device, is quite crucial. 
In this job, fault means performance fault. Therefore, fault injection 
is equivalent to slow I/O injection. Few previous work on slow I/O 
injection in RamDisk. We adopt the following methods to inject slow 
I/O. First, the specified CPU takes over running the simulated RamDisk. 
Next, we isolated the CPU to ensure that it does not perform other test 
related operations. Then we modified the RamDisk’s source code by 
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adding udelay() to the I/O’s bottom operations (i.e., read from RamDisk 
to buffers or write from buffers to RamDisk). Meanwhile, the CPU is in 
a busy waiting state during the udelay() operation, meaning the CPU 
does not perform any other operations. This indicates that the slow I/Os 
have been injected into the underlying device.

After that, the RamDisk source code is compiled and loaded into the 
Linux system; as a result, it must be reloaded for each injection method. 
Slow I/O injection is controlled by the three parameters listed below:

∙ Ratio determines the injection proportion.
∙ Latency determines the injection duration.
∙ Type determines the injection type.

We first collected data on the latency distribution of SSD disks under 
busy conditions over a 72-h period, observing the characteristics of 
latency during SSD’s performance variation. Based on the frequency 
of these fluctuations, we designed three delay patterns for injection to 
simulate various scenarios as comprehensively as possible. Addition-
ally, we identified corresponding instances in the PERSEUS [14] latency 
fluctuation database, providing evidence that our injection models are 
plausible and may occur in real-world situations. Three delay patterns 
are listed below:

∙ Random injection. The delay injection is based on a random num-
ber, and each one is independent. (e.g. host18, host15 in cluster-D 
in PERSEUS.)

∙ Continuous injection. This involves concentrating the slow I/Os at 
the bottom, keeping the underlying equipment at low speed for 
a certain period. For example, if the ratio is 1%, we injected the 
delay to 1000 continuous I/O per 100,000 I/Os. (e.g. host1, host3 
in cluster-G in PERSEUS.)

∙ Interval injection. This was designed to disperse the slow I/Os in 
the underlying devices as much as possible. This injection type 
is controlled using an interval instead of a ratio. If the interval is 
100, we injected the first I/O after every 100 I/Os. (e.g. host45 
in cluster-E in PERSEUS.)

These types of injection covers the characteristics of various delay dis-
tributions. After the delay injection, we treated the RamDisk as a black 
box and used it as an SSD with latency variation in our experiments. In 
subsequent experiments, unless otherwise specified, a random injection 
mode will be used, with a 10% probability of injecting a 10-μs delay. 
This configuration is chosen because it more accurately reflects the 
potential performance variation of an SSD under busy conditions [14].

4.4. PART III : eBPF monitoring system

To accomplish our observation goal, we required a tool that could 
monitor the kernel functions with nanosecond accuracy. We initially 
inserted the instrumentation directly into the kernel due to the simplic-
ity of this method. However, we encountered the following challenges: 
first, direct instrumentation generates an additional delay in the kernel 
that cannot be observed. Therefore, we cannot ignore the impact of 
the direct instrumentation delay on our experimental results. Besides, 
monitoring the observation function iteratively during the experiment 
is necessary for finding the root cause of the delay. Consequently, using 
the direct instrumentation method means that every time we changed 
the monitored function, we must recompile the kernel, which takes 10 
to 30 min each time. This significantly reduces experiments efficiency.

Accordingly, we developed a system monitoring tool—𝜇Scope with 
eBPF [8,21,22,38–41] technology. We utilized the BPF compiler col-
lection (BCC [42]) tool to write the eBPF programs, which can be 
used to hook kernel functions in a user-defined way. We mainly used 
kprobe and kretprobe [43] modules to obtain time information during 
I/O execution (i.e., the time when the selected function is executed). 
Then, we processed and analyzed the acquired data in the background. 
Moreover, the data collection process is quite sensitive to delay. As 
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result, minimizing the additional performance observation burden is 
challenging. In 𝜇Scope, adding each observed function generates addi-
tional costs. Therefore, the process of selecting the observation function 
should be thorough and efficient.

The I/O stack has a clear hierarchical relationship in the Linux 
kernel [44]. As a result, I/O processes have relatively fixed execution 
paths in the kernel. We have placed the majority of software stack 
functions and their call relationships in the monitoring system. The 
original 𝜇Scope is constructed with the entry function and exit function 
of each layer of the I/O stack as the observation points. And then 
we increase the monitored functions during the step-by-step analysis 
process. For example, whenever we discovered that the block layer 
had a delay exception during the monitoring process, we made further 
observations on the block layer. The 𝜇Scope adds the functions in a 
deeper level in the block layer to the observation points and so on. In 
most cases, after three to five iterations, we identified the root cause 
of the performance issues at the function level. When there were no 
performance exceptions at each layer under the original 𝜇Scope, we 
inferred that there were no performance problems and did not add 
additional analysis.

Furthermore, before our experimental, we compared the system 
performance when 𝜇Scope was turned on and off. We discovered 
that the performance impact was relatively stable in approximately 
20,000 comparative experiments, covering various configurations and 
workload settings. In other words, the latency fluctuation caused by 
𝜇Scope is much smaller than that of the software stack. Therefore, the 
delay impact introduced by the detection tool is negligible. In addition, 
it enabled monitoring various target functions without recompiling the 
kernel. It is flexible and very easy to apply to other scenarios. By 
modifying a few code lines for the monitored function, we can monitor 
the target function and even adapt to any version of the kernel.

5. Experimental setup

5.1. Experimental parameters

Our research objective is to investigate the impact of the SSD’s 
latency variation on the performance of the software storage stack in 
the kernel. Our experiment focuses on local stand-alone storage systems 
(e.g., Ext4 [45], F2FS [46], Btrfs [47], XFS [48], SPDK [49]). While 
selecting configuration items, we observed that our objective aligns 
with Cao’s [5] goal of observing performance variation in modern 
storage stacks. Therefore, our experimental parameters were inspired 
by Cao’s guidance, which was recommended by several storage experts. 
During our experiment, we tested five file systems: EXT4, Btrfs, XFS, 
F2FS and SPDK. They are all widely used in modern systems and cover 
a variety of current designs and functions.

EXT4 is the abbreviation of the fourth extended file system which is 
a journaling file system for Linux. It is the default file system for many 
Linux distributions including Debian and Ubuntu. Our experiment tests 
three configuration items of EXT4. Block size. This is a configuration 
item of EXT4 and XFS. Block represents a group of continuous sectors 
and is the basic unit for accessing data in the file system. Too large 
block size will lead to a lot of waste of space, and a small block size 
will lead to a reduction in the speed of reading and writing large files. 
Incorrect block size selection can degrade file system performance by 
several orders of magnitude [50]. Inode size. This is a configuration 
item of both EXT4, Btrfs and XFS. Inode is one of the most basic disk 
structures in the file system [26]. It is used to store the metadata of 
file on disk. Almost all I/O operations are related to inode. Therefore, 
this configuration item plays a crucial role in performance. Journal 
mode. This configuration is special for EXT4. It determines the journal 
management mode of the journaling file system. Journaling is a pre-
write logging of the file system to recover from power failure or 
crash. In Ext4, there are three types of journaling modes: writeback,
ordered, and journal [45]. Different journaling modes generally bring 
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Table 3
List of file systems and corresponding parameters.
 FS Parameter Default Value range  
 
EXT4

Block size 4096 1024, 2048  
 Inode size 256 128, 512, 1024  
 Journal mode Journal Ordered, writeback  
 
XFS

Block size 4096 1024, 2048  
 Inode size 256 128, 512, 2048  
 AG count Based on device size 8, 32, 128  
 F2FS gc_idle Greedy Cost–Benefit,

ATGC
 

 Btrfs Node size 16 384 4096, 65536  
 Special options datacow

datasum
nodatacow
nodatasum

 

 
SPDK

Memory zone size 2048 MB 4096, 8192  
 I/O model polling False True  
 Log level INFO ERROR, WARN,

DEBUG
 

different I/O overhead, so this configuration item has a great impact 
on performance.

XFS is a high-performance 64-bit journaling file system created by 
Silicon Graphics, Inc (SGI) in 1993 and ported to Linux in 2001. It 
shows high performance and high scalability for large files and large 
directories on new storage devices. Red Hat Enterprise Linux uses it 
as default filesystem. Our experiment tests three configuration items 
of XFS. In addition to Block size and Inode size introduced earlier,
Allocation group count is also an important configuration option of 
the XFS file system. The allocation group enables XFS to have the ability 
of parallel I/O, which has a great impact on I/O performance.

Btrfs is a modern copy on write (COW) file system for Linux. It 
has efficient snapshot and cloning technology. It is also strong in fault 
tolerance, repair and easy administration. Besides node size (similar 
to inode size), our experiment tests two other configuration items in 
Btrfs. Nodatacow. This is the option to determine whether Btrfs uses 
COW. When COW is disabled, Btrfs updates in-place when creating 
new files. Updates in-place improve performance for workloads that do 
frequent overwrites, at the cost of potential partial writes, in case the 
write is interrupted due to system crash or device failure. Nodatacow 
implies nodatasum, and disables compression. Nodatasum. This is 
the option to determine whether Btrfs enables data checksumming. 
There is a slight performance gain when checksums are turned off, the 
corresponding metadata blocks holding the checksums do not need to 
updated.

F2FS (flash-friendly file system) is a kind of new file system de-
signed according to the log-structured file system approach, which 
adapts to new storage forms. Our experiment tests one key configura-
tion item in F2FS. gc_idle.This configuration item determines the algo-
rithm when F2FS performs garbage collection. F2FS is a log-structured 
file system so that garbage blocks will be generated during operation. 
It is essential to conduct garbage collection. The algorithms that F2FS 
can choose during garbage collection include Cost–Benefit algorithm,
Greedy algorithm and ATGC (Age Threshold based Garbage Collec-
tion) algorithm. Garbage collection generally brings high performance 
overhead. Therefore, the garbage collection algorithm inevitably has a 
significant impact on the I/O performance of the file system.

SPDK (Storage Performance Development Kit) is an open-source, 
high-performance storage framework designed to accelerate storage 
I/O operations. It is optimized for modern storage hardware, partic-
ularly for NVMe (Non-Volatile Memory Express) devices, by bypassing 
the operating system kernel and interacting directly with hardware, 
thereby reducing overhead and maximizing performance. Memory 
Zone Size. This configuration specifies the size of the memory zone; 
larger memory zones can reduce the overhead of memory allocation 
and deallocation, thus improving performance. I/O Model Polling.
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Table 4
Filebench workload settings in our experiments.
 Workload Read/Write #Files Test time (s)
 Default Actual Default Actual 
 Fileserver 1:2 10,000 80,000 60 800  
 Webserver 10:1 1000 80,000 60 800  
 Varmail 1:1 1000 80,000 60 800  

This configuration determines whether I/O operations are performed 
using polling or interrupt-driven mode; choosing polling generally 
improves performance by reducing latency. Log Level. This setting 
controls the verbosity of log outputs; higher log levels can increase 
overhead and potentially affect performance.

Table  3 summarizes all the parameters and values used in our 
experiments.

5.2. Workload settings

We used the Filebench [24] tool to generate the experiment work-
load. Compared with other test tools such as FIO [37], Filebench 
uses real environment trace to simulate a more realistic storage stack 
situation. Our experiments used the following three pre-configured 
Filebench workloads listed in Table  4: Fileserver writes intensive 
workloads, and it can be used to simulate most common storage system 
in the real environment. Varmail simulates the I/O operations on 
the mail servers. It simulates the user’s reading, writing, and deleting 
emails behavior. It also uses a flat directory structure close to the actual 
mailbox, which tests the I/O’s file system capacity within the large 
directory. Finally, Webserver simulates I/O operations on web servers. 
When users browse web pages, the number of read operations is greater 
than that of write operations, so the R/W ratio is 10:1 in this workload. 
In addition, the concurrent nature of multi-threading and the fast 
reading of small files are important elements of workload testing. The 
Webserver workload covers typical read-intensive loads. Furthermore, 
for experimental purposes, we adjusted the file number and test time 
for each workload. In Table  4, ‘Actual’ means the configuration actually 
used in our experiment

During the experiment, we repeated the test 20 times for each 
configuration item and delay injection method to ensure the result ac-
curacy. We performed approximately 10,020 h of experimental testing. 
Even though we tested similar servers simultaneously, the experiment 
enabled eight servers to run for nearly 60 days.

5.3. Hardware setup and Ramdisk configurations

Our experiments were conducted on eight identical Alibaba Cloud 
servers equipped with the third generation Intel Xeon Scalable proces-
sor (i.e., Ice Lake). Memory space is essential because we needed to 
simulate devices in RAM. Our server was equipped with 64G of memory 
space and one CPU socket with eight physical cores. Due to the large 
scale of testing required, we also purchased eight servers with identical 
configurations and conducted sample experiments before the actual 
testing to ensure that there were no significant differences in server 
performance. Furthermore, we installed the Ubuntu 20.04 system on 
each server, with the kernel upgraded to version 5.8.0.

The Ramdisk in our experiments serves as a simulated SSD within 
the kernel. Here, we specify the configuration settings of the SSD used 
in our experiments. Page caching is deliberately disabled during the 
tests because the extensive I/O operations to SSDs are required for 
tests. If page caching is enabled, reading and writing to the page would 
result in significantly reduced testing efficiency. The SSD operates with 
the default noop I/O scheduler. The driver used by the Ramdisk is 
provided by the Ramdisk module within the Linux kernel. However, to 
enhance the accuracy and realism of the tests, we modify the Ramdisk 
driver to implement a multi-queue mechanism with a queue count of 
16 and a queue depth of 64. All settings not explicitly mentioned in the 
experiments are configured to their default values.
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Fig. 2. Overview of latency per operation and performance degradation after injecting slow I/Os with different storage stack configurations under three workloads: (a) Fileserver, 
(b) Webserver, and (c) Varmail. The 𝑥 axis represents the mean latency per operation in each workload under normal operation; the 𝑦 axis shows the percentage of increase 
after injection. Ext4 configurations are represented with circles, XFS with squares, Btrfs with pluses, F2FS with triangles and SPDK with diamonds. Each scatter point represents a 
combination of a file system configuration and an injection method.
6. Evaluation and analysis

This study investigates the effect of the SSD’s latency variation on 
the system software stack under different conditions. In the following 
sections, we explain the experimental results in detail.

Section 6.1 provides an overview of the performance impact in 
various storage stack configurations and workloads. Sections 6.2–6.4 
discuss and make further analysis from three aspects.

6.1. Influence at a glance

We first summarize the performance impact of the underlying la-
tency variation on the system storage stack. Then, we explore the 
experiment design method introduced in Section 4. We use three typical 
workloads in Filebench as the benchmarks, whose parameters are 
shown in Table  4. The experiment’s file systems and configurations are 
listed in Table  3.

Fig.  2 shows the results as scatter plots broken into the three work-
loads: Fileserver (in Fig.  1(a)), Webserver (in Fig.  1(b)), and Varmail (in 
Fig.  1(c)) Each symbol represents one storage stack configuration. We 
use circles for Ext4, squares for XFS, pluses for Btrfs and triangles for 
F2FS. Moreover, we record the I/O latency in each run and calculated 
the average. The 𝑥-axis represents the average latency per operation in 
each workload during normal operation. The 𝑦-axis shows the average 
latency’s percentage increase per operation (i.e., the slowdown ratio) 
after the slow I/O injection. Slowdown refers to the ratio between 
the increase in average latency after injection and the average latency 
before injection. We observe that a smaller ratio increase results in a re-
duced bottom-tail latency impact under the current configuration. Each 
scatter point represents the combination of a file system configuration 
and injection method.

Ext4’s performance varies greatly with the configurations, especially 
under the Fileserver workload. The small difference between the scatter 
points on the 𝑥-axis suggests that these configurations have similar 
average latency, while the difference on the 𝑦-axis represents the 
varying configuration sensitivity to the SSD’s latency variation. Ext4 
had a minimum slowdown ratio of 34% on some of the configurations 
without excluding the software stack performance fluctuations’ impact. 
In addition, the Ext4 configurations are generally sensitive under the 
Varmail workload, and can reach a maximum of 19.5%. Moreover, 
webserver’s configuration slowdowns are less than 10.1%.

Compared with Ext4, the scatter points of F2FS is relatively con-
centrated, indicating that F2FS performance has little impact with a 
change in configuration. It has a low average latency and is less affected 
by SSD’s latency variation under the Varmail and Webserver. However, 
under the write-intensive Fileserver workload, the average F2FS latency 
is quite high, only being lower than that of some Ext4 configurations. At 
the same time, F2FS is significantly affected by the underlying latency 
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variation, with a slowdown rate of 5.0%–15.1%, which exceeds the 
configurations of other file systems.

Compared to other file systems, SPDK achieves significantly lower 
I/O latency by bypassing the kernel. Consequently, along the 𝑥-axis, 
SPDK demonstrates superior performance over all other file systems. 
However, due to its inherently low latency, it is more sensitive to 
performance fluctuations. As a result, when slow I/O is introduced, 
SPDK generally experiences a more pronounced slowdown.

6.2. Access pattern

Symptom. Write operations involve more disk access than read operations, 
increasing the chances of latency variation events. The latency increase in 
write operations is 10.9% to 33.7% higher than the read operations under 
different configuration conditions.

Analysis. In general, each file system is more sensitive to the un-
derlying latency variation under the Fileserver and Varmail workloads, 
which arouse our discussion on R/W ratio.

We compare each operation’s delay separately listed in Fig.  3. The 
figure shows the latency increase ratio of each operation under each 
workload with default Ext4 configurations. Each column represents one 
operation under the workload. We observe that the writfile operation 
which means continuous writing, has the highest slowdown ratio up 
to 13.3%. The slowdown ratio of write operations like appendfilerand,
createfile and deletefile operations are 4.8%-8.9%. In contrast, the slow-
down ratio of readfile operation is about 3.6%-4.3%. The performance 
of operations unrelated to read and write, such as openfile and closefile, 
is not affected after injecting slow I/Os.

Next, we use 𝜇Scope to monitor the number of system access disks 
under each workload, which can be determined by setting an obser-
vation window and counting the underlying function runs detected by 
eBPF during the window period. We randomly select 20 observation 
windows in 5 s units from the test results, which do not overlap. Then, 
we count the runs and calculate the average value. Next, we perform 10 
repeated experiments for each configuration item. We observed that, 
within the same time frame, the frequency of disk access operations 
initiated by write requests exceeded that of read operations by 30.9% 
to 49.7%. In a complete write operation, the interaction with the disk 
includes reading and writing back, while the read operation does not 
require writing back. Even though writing backs may be clustered or 
delayed, write operations bring more disk access in general.

To validate our experiments, we utilize the fio [37] tool to generate 
workloads with varying Read/Write ratios. The experiments are con-
ducted on an ext4 file system using its default configuration settings. 
For each read-to-write ratio, we record the average latency from the fio 
tests and calculate the slowdown ratios of the workloads after injecting 
latency variations.
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Fig. 3. Each operation’s slowdown/% in each workload with the default Ext4 configurations. The white-gray bars represent read related operations and black-gray bars represent 
write related operations.
Fig. 4. The latency per operation and performance degradation after injecting latency 
variation in three workloads based on kernel storage stack and SPDK framework.

The results are illustrated in Fig.  5. As shown, there is no sig-
nificant trend in the average latency across workloads with different 
Read/Write ratios. However, as the proportion of write operations in-
creases, the performance degradation becomes more pronounced. This 
observation further confirms that write operations are more adversely 
affected by latency spikes at SSDs.

Root Cause. Due to more disk access, write operations are more 
likely to be affected by the underlying latency variation, so in write-
intensive workloads, the potential performance impact of latency vari-
ation is more significant.

Lessons. The results indicate that, compared to read requests, writes 
can suffer more performance impacts under an unstable device. To 
mitigate this issue, one solution is to employ a thinner storage stack, 
for example a user-space storage engine. To verify this idea, we further 
conduct a comparative experiment using storage performance develop-
ment kit(SPDK) [49] as an example. We build the SPDK architecture 
on the same system and enabled it to be loaded onto our simulated 
hard drive. Similarly, we conduct experiments using the workload from 
Filebench and inject latency variation. The performance results under 
the SPDK framework and the kernel software stack are compared in 
Fig.  4.

We can observe from the results that in the Fileserver and Web-
server workload, SPDK performs more stably in the face of underlying 
latency variation compared to the kernel storage stack. SPDK is more 
resilient to underlying latency variation and has better performance. 
In Fileserver workload, the slowdown of average latency is 3.06% for 
SPDK, much smaller than that for kernel stacks(11.08%).

Thinner storage stack effectively reduces the impact of underlying 
latency variation. However, the polling mechanism causes the un-
derlying slow I/Os to be more directly reflected in the application 
layer, and does not respond to slow I/Os. If slow fault prediction and 
processing with light overhead can be added to the existing foundation 
of SPDK, it will greatly improve performance in low latency hardware 
environments.
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6.3. Configurations

Symptom. The configurations related to consistency and performance in 
the file system may lead to the dependence between software execution 
functions, increasing the impact of SSD’s latency variation on software stack 
by more than 10%.

Analysis. The scatter points in Fig.  2 indicate that file systems under 
different configurations can have different sensitivity to SSD’s latency 
variation. We use the Ext4 system as a representative case to further 
study the relationship between configurations and such sensitivity. Fig. 
6 compares the average latency of Ext4 under different configurations 
and the slowdown ratios after the injection of slow I/Os. We rerun 
the same experiments shown in Fig.  2. While, due to space limit, we 
only demonstrate Ext4, we reach similar conclusions for the other file 
systems. The bars represent average latency, and correspond to the left 
𝑦-axis. The slowdown ratio for each configuration is shown as symbols 
and corresponds to the right 𝑦-axis. The 𝑥-axis lists the configuration 
details, and is formatted as the three-part tuple < Block Size — Inode 
Size — Journal Mode>.

Fig.  6 shows, in most workloads, the Ext4 configuration with ordered
often has a larger slowdown than writeback. When Journal Mode is
journal, there is no necessary relationship. We use 𝜇Scope to mon-
itor the journal-related functions and the performance exception of
journal_commit_transaction() is the most noticeable. Also, journal_com-
mit_transaction() is the commit function of journal transactions, which 
is the main function to execute journal functions. As shown in Fig.  7-T, 
in the ordered mode, after the bottom slow I/O injection, the execution 
time of the function has changed significantly. Its average latency has 
increased by 53.2% after the injection.

We perform a more fine-grained monitoring within the function. 
The commit of journal transactions is divided into the following six 
steps: 1. Pre-processing of transaction information. 2. Submission of 
data buffers. If Journal Mode = ordered, kernel must wait for the 
write operation to be completed. If Journal Mode = writeback or jour-
nal, it will be executed directly after submission. The function of 
this step is journal_submit_data_buffers(). 3. Writing the metadata block 
buffer to journal. The main monitored function of this step is jour-
nal_write_metadata_buffer(). In all the modes, this step requires waiting 
for the metadata to be written before proceeding. The main monitored 
function of this step is journal_write_metadata_buffer(). If Journal Mode 
= journal, after step three, there is an additional step to write the 
data blocks to the journal. 4. Writing journal transaction control part, 
including descriptor, etc. This step needs to be executed in every mode.
5. Writing the commit block. After ensuring that all are correctly writ-
ten, the kernel writes the journal’s commit block synchronously. The 
main monitored function of this step is journal_write_commit_record(). 6.
Completing the transaction commit. Finally, this transaction is added 
to the checkpoint queue, indicating that the transaction submission has 
been completed.

However, journal_submit_data_buffers() only adds the data block
buffer to the write disk queue. There is no specific function for the 
operation waiting to be written. Therefore, we calculate the gap of 
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Fig. 5.  The average latency and performance degradation after injecting latency variations in workloads with different Read/Write Ratio. The average latency is represented by 
white bars with diagonal stripes, with the left 𝑦-axis used for scaling. The slowdown is represented by black bars, with the right 𝑦-axis used for scaling.
Fig. 6. The average latency of Ext4 and the slowdown ratio after the injection of slow I/Os under different configurations. The bars represent the average latency of operations, 
and correspond to the left 𝑦-axis. The slowdown ratio for each configuration is shown as symbols, and corresponds to the right 𝑦-axis. The 𝑥-axis consists of configuration details, 
and is formatted as the three-part tuple < Block Size — Inode Size — Journal Mode>.
Fig. 7. The latency of journal_commit_transaction() and lower-level functions before and after the injection of slow I/Os (monitored by eBPF). T1–2: the waiting time between T1 
and T2. T2–3: the waiting time between T2 and T3.
the end time of journal_submit_data_buffers() and the begin time of
journal_write_metadata_buffer(), which is almost equivalent to waiting 
time(T1–2). We carry out our experiments with the performance moni-
toring of the three sub-functions below journal_commit_transaction() and 
the gap between them.

Thus, we use 𝜇Scope to monitor these functions in detail and results 
are shown in Fig.  7. T1–2 and T2–3 means the waiting time between 
T1, T2 and T3. The results show that although the latency of the 
three sub-functions increases after the injection of slow I/Os, they are 
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mild and not related to the journal mode. In contrast, the latency 
growth of waiting time T1–2 is quite noticeable in the ordered mode, 
with the average latency increasing by 51.0% and the 95th percentile 
rising by 239.2%. In the writeback/journal mode, the waiting time is 
approximately 0. Journal Mode configuration is just one example. We 
have observed similar results on other configurations.

Root Cause. The different Journal Modes result in various execu-
tion processes. The dependence during software execution, in other 
words, the execution sequence of functions, can easily amplify the 
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Fig. 8. The latency per operation and performance degradation after injecting latency 
variation in Fileserver workload based on EXT4 and BarrierFS.

Fig. 9. The slowdown of different layers after injecting latency variation in Fileserver 
workload based on EXT4 and BarrierFS.

impact of SSD’s latency variation. The greater the dependence between 
functions and bottom I/Os during software execution, the more signif-
icant the impact on the storage stack against SSD’s latency variation.

Lessons. Dependable I/Os are inevitable as they are driven by the 
applications (i.e., workloads). However, due to the chaotic nature of 
multiple layers across the stack, the order of persisting I/Os can be 
altered by the file system, block layer (i.e., IO scheduling), driver and 
the device itself (e.g., write retry). Traditionally, enforcing the order to 
maintain consistency demands the each dependable IO to be persisted 
by the device before issuing the next one, thereby yielding such high 
overhead as shown in our experiments.

To reduce the impacts from dependable I/Os, one effective solution 
is to separate the order logic from the durability. Previous work [51] 
shows that one can leverage a specific set of APIs (i.e., barrier) 
to explicitly maintain the order across all layers. We attempt to use
barrier technology to address the cascade influence caused by the 
order logic. Barrier technology changes the read and write mode of 
the kernel stack on the basis of existing systems, separating data read 
and write from sequence. Due to the fact that BarrierFS is developed 
based on EXT4, we conduct comparative experiments using BarrierFS 
and EXT4. We use Fileserver as workload and adjust the log-related 
configuration of the file system. All other configurations are tested 
using the default value. The result is shown in Fig.  8.

We can observe from the results that barrier greatly reduces 
the impact of underlying latency variation on the software stack while 
improving file system performance. This is particularly significant in 
Journal and Ordered modes. After injecting latency variation, the slow-
down in BarrierFS is 7.6% and 3.4% less than that in EXT4 in Journal 
and ordered modes.

However, BarrierFS did not completely solve the problem. We use 
𝜇scope for further analysis. We divide the main processes of the I/O 
stack in the kernel into File System, Journaling Block Device (JBD), 
Block Layer, and Drivers. And then we measure the slowdown in 
latency of these parts after injection latency variation, as shown in
Fig.  9.
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As shown in the figure, the mechanism of BarrierFS efficiently 
improves the performance Robustness in File System and JBD. But in 
Block Layer, it does not have a very good effect. This is mainly because 
BarrierFS mainly implements software level separation of sequence and 
data, which achieves performance improvement when sending requests 
downwards in the kernel. However, when it comes to submission to 
hardware, there is still a situation of queuing and waiting, which has 
not fundamentally avoided the impact of underlying latency. If such 
ideas can be applied to the entire storage stack, it will help minimize 
the impact of latency variation.

6.4. Pattern of latency variation

Symptom. Continuous slow I/Os can exert worse impacts on the per-
formance of the software stack. In situations with the same occurrence ratio, 
the software stack delay caused by continuous slow I/Os increases by 14.7% 
more than that caused by random slow I/Os. 

Analysis. There are various reasons for the SSD’s latency variation, 
and the patterns are also different. To ensure the comprehensiveness 
of the experiment, we design three different injection methods for 
injecting slow I/Os, which are introduced in Section 4.3.

When we inject a 10% delay of 10 μs, the multi-queue I/O charac-
teristics of the SSD mitigate the impact of consecutive injections. This 
is because, regardless of whether the I/O operations are completed, as 
long as there are available queues, the software stack can continue to 
send I/O requests downstream, preventing cascading effects even in 
the case of consecutive I/Os. However, as we increase the injection 
ratio, this signifies a more significant performance fluctuation in the 
simulated SSD, and the impact of consecutive slow I/O injections 
gradually becomes apparent. When we inject a 20% delay of 10 μs, 
the consecutive slow I/O injections lead to more significant delay 
slowdown compared to random slow I/O injections.

Fig.  10 illustrates this result, showing the each file system’s slow-
down ratio with the default configuration generated using different 
injection methods. From this, we can also infer that as the injection 
ratio increases further, the cascading effects caused by consecutive 
slow I/O operations will become more pronounced. We examine the 
underlying cause of this phenomenon using the example of injecting 
20%–10 μs delays. show the each file system’s slowdown ratio with 
the default configuration generated using different injection methods. 
We use 𝜇Scope to monitor functions to find the root cause of this 
phenomenon. The results indicate that different patterns have varying 
performance impacts, and this occurs in the Generic Block Layer and 
lower levels. Therefore, we speculate that the root cause occurred in 
the Generic Block Layer.

As shown in Fig.  11, the delay of the Generic Block Layer changes 
over time. Since there were no performance anomalies during the stage 
where the latency variation did not occur, we refined the observation 
range to two cycles of slow I/O injection (i.e., one cycle per 1000). We 
observe that the delay of the Generic Block Layer shows a trend over 
time, slowly increasing and then decreasing, in a cyclic manner. It is 
most evident in continuous injection.

Furthermore, we conduct monitoring on low-level functions for root 
cause analysis. An in-depth analysis of the functions in the Generic 
Block Layer reveals that the queue issue increased the latency. Although 
multi-queue mechanisms alleviate the blocking issues within the soft-
ware stack to some extent, when slow failures become more severe, 
the latency at the generic block layer continues to rise progressively. 
When the underlying latency variation occurs, the request’s processing 
delay becomes longer and the bio queue becomes blocked, resulting 
in bio accumulation in the waiting queue. For functions that block 
sending bio, their latency also increases accordingly. Once the potential 
variations in latency subside and the Ramdisk is able to efficiently 
handle I/O requests, the blocking issues gradually dissipate within a 
short period of time.
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Fig. 10.  The slowdown ratio of each file system generated by different injection methods. There are three types of slow I/O injection. As the injection ratio increases (due to the 
deterioration of hardware latency variation), the cascading effects resulting from consecutive slow I/Os become more pronounced. Type1: Random Injection; Type2: Continuous 
Injection; Type3: Interval Injection.
Fig. 11.  The Latency (ns) of Generic Block Layer when encountering continuous SSD’s latency variation (in two cycles). The red periods represent intervals during which continuous 
latency variation are injected, while the blue periods indicate intervals without any injection.  (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
Therefore, if the latency variation occurs through continuous slow 
I/O, the bio sent by the Generic Block Layer to the waiting queue will 
also accumulate, significantly impacting the performance. Hence, based 
on results of different patterns, we discover that the more dispersed 
slow I/O is, the less impact it has on function latency.

Root Cause. As the block layer queue temporarily accumulates 
SSD’s latency, continuous slow I/Os can negatively impact the perfor-
mance of the software stack considerably. This phenomenon becomes 
more pronounced when there are significant bottom latency variations, 
as the multi-queue mechanism helps mitigate some of the issues related 
to continuous slow I/Os.

Lessons. First of all, there are many instances of continuous slow 
I/Os in latency variations (e.g. fail-slow [10]). It cannot be avoided 
in low-latency SSDs. Based on the current experimental results, one 
apparent solution is to increase the queue depth and the number of 
queues. However, this is also dependent on the inherent parallelism 
capabilities of the SSD. This approach, however, is not universally 
applicable to all users. If this issue cannot be effectively resolved on 
a single SSD, it appears that we could address it within a multi-disk 
array or a distributed system. Forwarding I/O requests from slow disks 
is an effective method for mitigating the impact of slow failures.

Currently, some work has been done to avoid the influence of Fail-
slow, such as LinnOS [52] predicting the slowdown of underlying I/O 
in the kernel. To encounter the performance degradation caused by 
continuous slow I/Os, we try to reproduce LinnOS and mount it in 
11 
our system. However, LinnOS only predicts individual slowness. The 
accuracy decreases significantly when it predicts continuous slow I/Os. 
From the comparison of our experimental results, it can be seen that 
individual slowness has little impact, while continuous ones can lead 
to more serious performance impacts. It is important and urgent to 
implement effective continuous slow I/O prediction. 

When continuous slow I/Os occurs, the commonly used distributed 
approach is to switch nodes. Switching nodes usually takes around 3 
ms–10 ms by testing. This is an expensive expense for low latency 
systems. According to previous research [10,17], the latency variation 
of the disk is generally not widespread. In the vast majority of cases, 
only a single disk is slow. So the Fail-slow granularity is likely to be the 
disk rather than the node. We simulate the time required for switching 
disks, which only requires 5 μs-17 μs. In high-performance scenarios, 
switching disks is a promising choice to mitigate impacts from SSD’s 
latency variations.

6.5. Validation of Ramdisk

In this section, we evaluate the effectiveness of using Ramdisk to 
simulate SSDs. Given that FEMU [36] exhibits performance charac-
teristics comparable to real SSDs and is capable of simulating SSD 
activities (although excluded due to high CPU overhead), we conduct 
latency tests by comparing real SSDs, FEMU-based SSD simulations, and 
Ramdisk-based SSD simulations. The results of the average latency test 
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Fig. 12. (a) Average Latency of the SSD and Three Simulated SSDs. (b) The cumulative distribution probability (CDF) plots of the Ramdisk before and after the injection of 
performance fluctuations (10% with a 10 μs delay), as well as those of FEMU before and after simulated garbage collection.
are presented in Fig.  12(a). As mentioned in Section 4.2, the unmodified 
Ramdisk exhibits lower operational latency compared to a physical 
SSD. Therefore, we first introduce a fixed delay in Ramdisk to ensure 
that its average latency aligns with that of the physical SSD.

Next, we address the issue of performance fluctuations. We utilize 
FEMU to simulate garbage collection actions in SSDs and plot the 
corresponding latency distribution curve. Subsequently, we adjust the 
latency injection parameters. When injecting a continuous 10%–10 μs 
delay into the Ramdisk, the latency distribution curve of the Ramdisk 
aligns closely with that of FEMU with GC, as shown in Fig.  12(b). 
This shows that the flexible adjustment of latency injection parameters 
in the Ramdisk can effectively replicate nearly all latency fluctuations 
caused by internal SSD mechanisms. 

This indicates that most latency reductions observable in SSD oper-
ations can be effectively simulated using Ramdisk. Despite the internal 
complexity of SSD mechanisms, e.g., garbage collection and wear lev-
eling, these devices are essentially ‘‘black boxes’’ to the kernel software 
stack. Their external behavior is reflected mainly in the latency varia-
tion [4]. Thus, Ramdisk-based simulations provide a broader range of 
latency variation modeling. 

To further validate this hypothesis, we conduct real-SSD testing. We 
perform high-load I/O operations on a Samsung 980 PRO and record 
latency within a one-minute time window. If the average latency within 
one minute exceeds 10% of the previously tested value, it is considered 
a warning of severe performance degradation. We collect 1200 data 
samples, resulting in 27 warnings. We then plot the latency distribution 
curves for each of these one-minute intervals. Subsequently, we try to 
adjust the latency injection parameters (including injection ratio, la-
tency and type in Section 4.3), all of which lead to the Ramdisk’s latency 
distribution curve closely resembling the latency distribution curve of 
the actual SSD. In addition, we use average latency, P50, P90, and 
P95 as validation points. The first three latency metrics of the Ramdisk 
differ from the actual drive by no more than 5%, and P95 differs by no 
more than 10%. This suggests that most of the complex mechanisms 
within the actual SSD, which contribute to latency variations, can be 
effectively replicated by the Ramdisk simulation. 

Overall, the Ramdisk simulation provides a broader range of per-
formance fluctuation modeling compared to simulations focused on 
specific mechanisms (such as FEMU). By utilizing Ramdisk, we gain 
finer control over latency distribution, allowing us to simulate a wider 
array of potential real-world drive latencies. This enables the observa-
tion of the impact on the software stack across a broader spectrum of 
possible scenarios. 

6.6. Overhead

To test the load of 𝜇Scope, we conduct the following experi-
ments. Firstly, we use the Filebench test without any monitoring tools 
as the baseline. Based on it, the observation functions are set to 
the entry function and exit function of each layer of the I/O stack 
(VFS, File System, Block Layer, Drivers and Device). We run 10 re-
peated experiments on different benchmarks and the result is shown in
12 
Fig. 13. The average latency (μs) in Filebench result using different monitoring tools 
under three benchmarks.

Fig.  13. The average overload added by 𝜇Scope (4.77%) is similar to 
Ftrace (6.49%), far lower than that brought by Perf (12.7%). But the 
monitoring granularity of Ftrace is at the microsecond level, while the 
monitoring granularity of 𝜇Scope is at the nanosecond level. Overall, 
the 𝜇Scope can add less monitoring load while ensuring monitoring 
accuracy.

7. Limitations and discussion

In 𝜇Scope, we use a RamDisk-based SSD as the media to inject delay. 
In practice, real SSDs may suffer from complicated or alternative failure 
modes that are not covered by our testing framework. As a result, our 
analysis may not reflect these cases and thus limits the thoroughness 
of our findings. However, we would argue that, by simulating a wide 
variety of delay patterns, 𝜇Scope is capable of covering most scenarios.

Moreover, we use the purest device–RamDisk for the experiment, 
and it definitely expose the simplest problems. If it involves actual 
SSDs, there will definitely be more complex situations. Considering the 
various mechanisms in FTL within the actual SSDs, including garbage 
collection, wear level, etc., problems may be more interesting. There-
fore, further observation and research are worth researching, but more 
fine-grained monitoring and analysis are also necessary conditions for 
deeper research.

Another potential limitation comes from our selection on the work-
loads. In this paper, we use popular benchmarks from the field, such 
as Fileserver and Varmail. Consequently, certain access patterns or 
specific attributes may not be included in our study. Yet, we believe 
that, with our 𝜇Scope open-sourced, interested parties can easily reuse 
our toolkit to examine their particular workloads and subsequently 
identify the suboptimal performance issues.

8. Related work

SSD’s Fail-slow. To the best of our knowledge, there is no sys-
tematic research on the impact on the software stack against SSD’s 
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latency variation. However, the Fail-slow problems, a typical latency 
problems in hardware, have always been a concern. Specifically, Hao 
et al. [11] studied storage performance in over 450,000 disks and 
4000 SSDs over 87 days. They proved that Fail-slow problems are 
common. Furthermore, the examples of SSD tail latency motivate us 
to start this work. Gunawi et al. [16] studied over 100 reports of Fail-
slow hardware incidents from large-scale cluster deployments, which 
showed that all hardware types such as SSD can exhibit Fail-slow 
problems. Lu et al. [17] collected logs from over one million NVMe 
SSDs deployed at Alibaba to study the characteristics of Fail-slow in 
NVMe SSDs.

Stack Performance. With the rapid decline of hardware latency, 
the performance of software stack has gradually attracted people’s 
attention. Cao et al. [5] provided the first systematic study on perfor-
mance variation in modern storage stacks. Zhong et al. [8] pointed out 
that software was now the storage bottleneck. They presented a frame-
work by to accelerating R/W by safely bypassing most of the kernel’s 
storage stack with eBPF. Liao et al. [53] have noticed the performance 
issue with software stack and proposed some improvement methods for 
taking full advantage of high-performance drives.

9. Conclusion

In this work, we provide the first systematic study on the impact 
of SSD’s latency variation on software stack performance. We have de-
signed and implemented 𝜇Scope to evaluating storage stack robustness 
against SSD’s Latency Variation. Although most of our observations 
are executed in the experimental environment, we believe that they 
provide valuable insight into the impact of latency variation in real 
industrial systems.

Based on our experimental results, we have listed three practices for 
minimizing the impact of latency variation when using new low-latency 
hardware devices:

(1) Write operations involve more disk accesses than read opera-
tions, increasing the chances of latency variation events. Therefore, by 
leveraging persistent memory or user-space stacks, the impact can be 
efficiently mitigated.

(2) The configuration item that establishes dependence between 
functions, is easy to cause sensitivity to the SSD’s latency variation. A 
promising suggestion is to separate the order logic from the durability, 
which help improve the OS stack to adapt to new devices.

(3) As the block layer queue accumulates SSD’s latency temporarily, 
continuous slow I/Os can negatively impact the performance of the 
software stack considerably. It is suggested to reasonably set up the 
algorithm for redirected write in distributed systems.
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