
Error Delayed Is Not Error Handled: Understanding and
Fixing Propagated Error-Handling Bugs

HAORAN LIU∗, National University of Defense Technology, China
SHANSHAN LI∗, National University of Defense Technology, China
ZHOUYANG JIA, National University of Defense Technology, China
YUANLIANG ZHANG, National University of Defense Technology, China
LINXIAO BAI, National University of Defense Technology, China
SI ZHENG, National University of Defense Technology, China
XIAOGUANG MAO, National University of Defense Technology, China
XIANGKE LIAO, National University of Defense Technology, China

Error handling is critical for software reliability. In software systems, error handling may be delayed to other
functions. Such propagated error handling (PEH) could easily be missed and lead to bugs. Our research reveals
that PEH bugs are prevalent in software systems and, on average, take 44.1 days to fully address. Existing
approaches have primarily focused on the error-handling bug within individual functions, which makes it
difficult to fully address PEH bugs.

In this paper, we conducted the first in-depth study on PEH bugs in 11 mature software systems, examining
how errors propagate and how they should be handled. We introduce EH-Fixer, an LLM-based tool for
automated program repair specifically designed to address PEH bugs. For each PEH bug, EH-Fixer constructs
its propagation path, and repairs them through retrieval-augmented generation. To assess the performance of
our approach, we collected 89 historical PEH bugs from the Linux Kernel as well as 9 widely used applications.
The experimental results show that EH-Fixer can fix 83.1% (74/89) of PEH bugs.

CCS Concepts: • Software and its engineering→ Error handling and recovery.

Additional Key Words and Phrases: Error-Handling Bug, Automatic Program Repair

ACM Reference Format:
Haoran Liu, Shanshan Li, Zhouyang Jia, Yuanliang Zhang, Linxiao Bai, Si Zheng, Xiaoguang Mao, and Xiangke
Liao. 2025. Error Delayed Is Not Error Handled: Understanding and Fixing Propagated Error-Handling Bugs.
Proc. ACM Softw. Eng. 2, FSE, Article FSE114 (July 2025), 24 pages. https://doi.org/10.1145/3729384

1 Introduction
Software systems frequently encounter errors, necessitating appropriate handling to maintain
stability. A prevalent issue impacting software reliability is the presence of error-handling bugs,
which are failures to properly handling specific errors.
∗Co-first author.

Authors’ Contact Information: Haoran Liu, National University of Defense Technology, Changsha, China, liuhaoran@nudt.
edu.cn; Shanshan Li, National University of Defense Technology, Changsha, China, shanshanli@nudt.edu.cn; Zhouyang
Jia, National University of Defense Technology, Changsha, China, jiazhouyang@nudt.edu.cn; Yuanliang Zhang, National
University of Defense Technology, Changsha, China, zhangyuanliang13@nudt.edu.cn; Linxiao Bai, National University
of Defense Technology, Changsha, China, linxiao_b@nudt.edu.cn; Si Zheng, National University of Defense Technology,
Changsha, China, zhengsi@qiyuanlab.com; Xiaoguang Mao, National University of Defense Technology, Changsha, China,
xgmao@nudt.edu.cn; Xiangke Liao, National University of Defense Technology, Changsha, China, xkliao@nudt.edu.cn.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2994-970X/2025/7-ARTFSE114
https://doi.org/10.1145/3729384

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

https://doi.org/10.1145/3729384
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729384

FSE114:2Haoran Liu, Shanshan Li, Zhouyang Jia, Yuanliang Zhang, Linxiao Bai, Si Zheng, Xiaoguang Mao, and Xiangke Liao

Patch
in 4.0

1 static int __spi_sync(...) {
 ...
2 + status = __spi_validate(spi, message);
3 + if (status != 0)
4 + return status;
 ...
5 }

6 int spi_sync(...) {
 ...
7 ret = __spi_sync();
8 return ret;
 ...
9 }

10 static int mchp23k256_write(...) {
 ...
11- spi_sync(flash->spi, &message);
12+ ret = spi_sync(flash->spi, &message);
13+ if (ret)
14+ return ret;
 ...
15 }

Patch
in 4.16

16 static int max1111_read(...) {
 ...
17 err = spi_sync(data->spi, &data->msg);
18 if (err < 0) {
19 dev_err(...,"spi_sync failed",...);
20 mutex_unlock(&data->drvdata_lock);
21 return err;
22 }
 ...
23 }

...

...

Fig. 1. Limitations of existing approaches.

Existing approaches that fix error-handling bugs usually rely on manually created templates. For
instance, ErrDoc [55] identified four categories of repair methods and summarized corresponding
templates. Such methods require developers to possess extensive domain knowledge, struggle to
adapt to the software evolution, and tend to be inaccurate. With the rapid development of large
language models (LLMs), there is growing interest in utilizing LLMs for automatic program repair
(APR). For example, ChatRepair [63] guided the APR by feeding the test results back to LLMs, and
RAP-Gen [56] fine-tuned LLMs for APR by retrieving similar patches. However, such efforts are
limited in two aspects.

Firstly, error-handling bugs can affect multiple functions within a software system. We illustrate
this with an example from the Linux Kernel in Fig. 1. Developers fixed an error-handling bug
in version 4.0 (lines 2-4) and returned a variable “status” (line 4). This variable represents an
abnormal state of the software system, referred to as an error . This error was propagated to other
functions along the data/control flow (lines 4, 7, 8, 11, 17). Such a propagation path is referred to
as the error propagation path. The error reaches function𝑚𝑐ℎ𝑝23𝑘256_𝑤𝑟𝑖𝑡𝑒 and causes a new
error-handling bug in line 11, and was not fixed until version 4.16. Error-handling bugs in line 2
and 11 are caused by the propagation of the same error, and we refer to the collection of such bugs
as a propagated error-handling (PEH) bug. Existing approaches usually focus on single-hunk
fixes[55], are inadequate for addressing PEH bugs.
Secondly, error-handling strategies vary across different software systems and even among

different functions. For instance, the error in𝑚𝑐ℎ𝑝23𝑘256_𝑤𝑟𝑖𝑡𝑒 only needs to be passed to its
caller (line 14), whereas the error in𝑚𝑎𝑥1111_𝑟𝑒𝑎𝑑 necessitates additional logging (line 19) and
cleanup (line 20). Choosing the appropriate handling requires an understanding of how the software
and each function handles errors. Existing template-based approaches often replicate near-by error-
handling code snippets [55]. They overlook the diversity of handling strategies, and could result in
inappropriate repairs.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

Error Delayed Is Not Error Handled: Understanding and Fixing Propagated Error-Handling Bugs FSE114:3

To better understand the PEH bug, we conducted studies on 153 (44+109) PEH bugs from the
Linux Kernel and 10 applications. Our findings indicate that PEH bugs are prevalent in software
systems and, on average, take 44.1 days to fully address. To tackle PEH bugs, we proposed an
LLM-based automated program repair (APR) approach EH-Fixer. Our key insight is that resolving
error-handling bugs requires a step-by-step fix along the propagation path, not just within a single
function. Accordingly, EH-Fixer constructs the error propagation path for the PEH bug, identifies
functions necessitating repair, and generate patches. The design of EH-Fixer presents two primary
challenges:

• Firstly, constructing the error propagation path is challenging. To address this, we analyzed
153 PEH bugs, studying their propagation characteristics to inform our construction of the
propagation path.

• Secondly, fixing functions on the propagation path is not easy. We analyzed 2,550 functions in
153 PEH bugs, identifying contextual information that aids LLMs in selecting the appropriate
handling. This information guides LLMs using a retrieval-augmented technique.

We evaluated the performance of EH-Fixer in fixing real-world PEH bugs. We used EH-Fixer to
repair 9 new error-handling bugs in the Linux Kernel. Two have been confirmed, while the rest are
still under review. Furthermore, we collected 89 (44+45) historical PEH bugs from the Linux Kernel
and 9 highly-rated applications on GitHub, including 233 functions necessitating repair. To mitigate
data leakage, we partitioned the dataset based on the training cut-off time of LLMs [47]. Bugs fixed
post-cut-off are free from data leakage since their patches were not included in the training data of
LLMs. For earlier bugs, we employed source code transformation methods maintaining semantic
equivalence [69]. Our experiments revealed that EH-Fixer successfully resolved 83.1% (74/89) of
the PEH bugs within five attempts, and notably, 48.6% (36/74) of these PEH bugs cannot be fixed by
all comparative approaches.

The key contributions of this paper include:
• We conducted a study on 153 historical PEH bugs from the Linux Kernel and 10 applications.
These findings contribute to a deeper understanding of PEH bugs, reveal limitations of
existing approaches, and inform the design of our proposed method.

• We proposed an APR approach EH-Fixer. By using LLMs and a retrieval-augmented technique,
EH-Fixer is able to fix PEH bugs.

• We constructed a dataset containing 89 historical PEH bugs, and compared the performance
of EH-Fixer against 3 state-of-the-art (SOTA) approaches. Experiment results show that
EH-Fixer outperforms SOTA approaches by fixing an additional 48.6% (36/74) PEH bugs.

2 Understanding Propagated Error-Handling Bug
In this section, we take an in-depth look into the PEH bug through an empirical study. We will
first outline the methodology used in this study, then present our findings. Our findings involve
the prevalence and resolution time of PEH bugs, and characteristics of PEH bugs concerning their
propagation and handling.

2.1 Study Methodology
2.1.1 Studied Subjects. As shown in Table 1, we studied 11 software systems from different domains.
We select these projects because they are: a) mature and widely used, each having at least 500
GitHub stars; b) open-source and have well-maintained evolution histories. These criteria ensure
the accuracy and generality of our findings.

2.1.2 Data Collection. An errormay propagate throughmultiple functions, and some functionsmay
not handle the error properly, resulting in a PEH bug. To better understand PEH bugs, we analyze

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

FSE114:4Haoran Liu, Shanshan Li, Zhouyang Jia, Yuanliang Zhang, Linxiao Bai, Si Zheng, Xiaoguang Mao, and Xiangke Liao

Table 1. Studied subjects.

Domain Name Line Number PEH Bugs
Operating System Linux Kernel 36,780,452 44

Database TimescaleDB 659,465 23
MonetDB 452,349 14

Image Editor Darktable 664,703 14
FTP ProFTPD 845,882 13

Machine Learning H2O 918,805 11

Security Hashcat 1,790,923 11
MASSCAN 59,803 3

Data Transfer Zstandard 157,915 9
Web server Lighttpd 132,521 7
Player Audacious 49,795 4

existing errors in the software, collect functions on their propagation paths, and identify PEH
bugs accordingly. First, we use the method of an existing approach [31] to identify error-handling
code snippets. We then manually analyze the error propagation path based on data dependencies,
and document the functions involved. A PEH bug is identified if functions along the propagation
path fails to appropriately handle the error. For example, in Fig. 1, we first identify error-handling
code snippets in __𝑠𝑝𝑖_𝑠𝑦𝑛𝑐 ,𝑚𝑐ℎ𝑝23𝑘256_𝑤𝑟𝑖𝑡𝑒 , and𝑚𝑎𝑥1111_𝑟𝑒𝑎𝑑 . We then construct the error
propagation path based on data/control dependencies and collect functions including 𝑠𝑝𝑖_𝑠𝑦𝑛𝑐 .
Finally, we searched the commit history and found that the error in __𝑠𝑝𝑖_𝑠𝑦𝑛𝑐 was handled at
version 4.0, whereas the error in𝑚𝑐ℎ𝑝23𝑘256_𝑤𝑟𝑖𝑡𝑒 was not handled until version 4.16, so they
were considered as a PEH bug.

2.2 Resolution Time of PEH bugs
We investigated 876 error-handling code snippets to study the prevalence of PEH bugs and their
resolution time, and found:

Finding 1: A significant 41.9% (367/876) of errors propagate to multiple functions. Errors
affecting 17.5% (153/876) of functions persist across multiple software versions (classified
as PEH bugs). On average, these errors propagate through 16.7 functions and require 44.1
days for complete resolution.

Taking Fig. 1 as an example, the error in function __𝑠𝑝𝑖_𝑠𝑦𝑛𝑐 propagated through function return
values to multiple functions, and some functions such as𝑚𝑐ℎ𝑝23𝑘256_𝑤𝑟𝑖𝑡𝑒 fail to handle this
error properly. Moreover, the fix in𝑚𝑐ℎ𝑝23𝑘256_𝑤𝑟𝑖𝑡𝑒 also propagated the error to its callers, and
may result in more functions necessitating repair.

Implication: PEH bugs are prevalent in software systems and affect multiple functions. Resolving
them usually takes a significant amount of time, posing a threat to software reliability.

2.3 Characteristics of the error propagation
This study examines how errors propagate across functions, and how such propagation causes
PEH bugs. We investigated 2,550 functions in the error propagation path of 153 PEH bugs to study
how they propagate the error. We found that:

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

Error Delayed Is Not Error Handled: Understanding and Fixing Propagated Error-Handling Bugs FSE114:5

Finding 2: 44.9% (1,145/2,550) of the functions propagate errors. Of these, 85.7% (981/1,145)
propagate errors via their return values, 12.3% (141/1,145) by altering parameters, and 2.3%
(26/1,145) by modifying global variables.

On the one hand, this finding suggests that functions mainly propagate the error through its
return values or parameters, and the error propagation path can be identified accordingly. On
the other hand, this finding suggests that, on the error propagation path, functions in leaf nodes
need to be repaired according to their parent nodes. For example, as depicted in Fig. 1, callers of
𝑚𝑐ℎ𝑝23𝑘256_𝑤𝑟𝑖𝑡𝑒 may need to be repaired because the patch in𝑚𝑐ℎ𝑝23𝑘256_𝑤𝑟𝑖𝑡𝑒 returns the
error (line 14).

Further investigation into these 1,145 functions revealed the rationale behind their error propa-
gation:

Finding 3: 66.6%(763/1,145) chose to propagate errors because their errors could affect
subsequent program execution, while the remaining 33.4%(382/1,145) did so because the
software uniformly handles certain types of errors.

We classify errors that fall into both categories as uniform handled, as such errors are propagated
to specific code snippets, making them easy to identify. This finding indicates that the decision to
propagate an error depends on the potential impact of the error on subsequent program execution
and the handling strategy of the software. We define the term error impact as the influence of
an error on subsequent program execution. This impact is twofold: it affects both the function
in which the error occurs and any functions that call this function. For instance, as illustrated in
Fig. 1, the role of the𝑚𝑎𝑥1111_𝑟𝑒𝑎𝑑 function is to read, process, and return data. The error at line
17 not only halts the execution of𝑚𝑎𝑥1111_𝑟𝑒𝑎𝑑 due to a failure in data input, but also prevents
the calling functions from receiving the processed data, necessitating the return of an error code.

Implication: The propagation path of an error can be traced through return values and parame-
ters, while the fixing of error-handling bugs requires an understanding of the error impact and the
handling strategy of the current software.

2.4 Characteristics of the error-handling action
We term the individual statements within error-handling code snippets as error-handling action,
and refer to the combination of these actions as the action set. The correlation between the
error impact and the action set is termed the error-handling strategy. This strategy exhibits
considerable diversity across different software systems and even within individual functions.
For instance, in Fig. 1, the error-handling action set in 𝑚𝑐ℎ𝑝23𝑘256_𝑤𝑟𝑖𝑡𝑒 differs from that in
𝑚𝑎𝑥1111_𝑟𝑒𝑎𝑑 .

We first studied 2,151 handling actions in error-handling code snippets from these 1,145 functions,
and found that:

Finding 4: The studied error-handling code snippets include 704 distinct actions, catego-
rized as follows: resource cleanup 56.1% (395/704), returning 37.9% (267/704), and logging
6.0% (42/704).

Cleanup actions are statements like exit, free, close, delete, and unlock, while return actions
include return, goto, break, and continue. The variety of these actions underscores the complexity of

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

FSE114:6Haoran Liu, Shanshan Li, Zhouyang Jia, Yuanliang Zhang, Linxiao Bai, Si Zheng, Xiaoguang Mao, and Xiangke Liao

selecting an appropriate action set to handle the error. For instance, to generate the error-handling
code snippet in 𝑚𝑎𝑥1111_𝑟𝑒𝑎𝑑 of Fig. 1, it is critical to acknowledge that: 1) The error propa-
gated from 𝑠𝑝𝑖_𝑠𝑦𝑛𝑐 is severe for𝑚𝑎𝑥1111_𝑟𝑒𝑎𝑑 , and handling it requires ending𝑚𝑎𝑥1111_𝑟𝑒𝑎𝑑
and return the error; 2) 𝑑𝑎𝑡𝑎→𝑑𝑟𝑣𝑑𝑎𝑡𝑎_𝑙𝑜𝑐𝑘 utilized by 𝑚𝑢𝑡𝑒𝑥_𝑙𝑜𝑐𝑘 can be cleaned up using
𝑚𝑢𝑡𝑒𝑥_𝑢𝑛𝑙𝑜𝑐𝑘 ; 3) 𝑑𝑒𝑣_𝑒𝑟𝑟 can log the error; 4) “𝑒𝑟𝑟” can be used as the return value. Note that, It is
common for error-handling code snippets to rely on specific functions for logging, resource cleanup,
and returning standardized error codes (e.g., "𝑙𝑜𝑔_𝑒𝑟𝑟 " for logging, "close" for files, "ENOMEM" for
return values). These functions and return values are commonly repeated across multiple code
snippets, resulting in 704 distinct actions out of 2,151 handling actions.

We further investigated these error-handling code snippets to determine the contexts that could
inform the selection of handling action sets:

Finding 5: Almost all log actions and return actions repeatedly occur within the error
propagation path or in functions from the same file, and 96.0% (458/477) of cleanup actions
correspond to specific resources.

Functions within the same module usually use the same logging function. This usage allows for
inferences about log actions, such as the 𝑑𝑒𝑣_𝑒𝑟𝑟 in Fig. 1. Moreover, return values used in functions
of the same error propagation path are similar. For instance, the return action in𝑚𝑐ℎ𝑝23𝑘256_𝑤𝑟𝑖𝑡𝑒
(line 14) can be inferred from the handling in 𝑠𝑝𝑖_𝑠𝑦𝑛𝑐 (line 8). However, 35.4% (169/477) of the
cleanup actions remain unidentified in these contexts (functions from the same propagation path
or the same file). Through our analysis, we discovered that 96.0% (458/477) of the cleanup actions
are associated with specific resources. For example, the cleanup actions for 𝑑𝑎𝑡𝑎→𝑑𝑟𝑣𝑑𝑎𝑡𝑎_𝑙𝑜𝑐𝑘 in
𝑚𝑎𝑥1111_𝑟𝑒𝑎𝑑 can be informed by observing how similar resources with the same data type as
𝑑𝑎𝑡𝑎→𝑑𝑟𝑣𝑑𝑎𝑡𝑎_𝑙𝑜𝑐𝑘 are managed in other error-handling code snippets.

Implication: Choosing the appropriate action set necessitates specific contextual information,
including the error-handling strategies of the current software system, available handling actions,
and resource usage. Existing error-handling code snippets in the software can guide this selection.

3 EH-Fixer Design
This section outlines the design of EH-Fixer, an APR approach employing LLMs to repair PEH
bugs automatically. Error handling in C/C++ is usually manually implemented by developers, so it
is more flexible and error-prone [49, 51]. Therefore, this paper focuses on error-handling bugs in
C/C++ programs.

The design of EH-Fixer is illustrated in Fig. 2. EH-Fixer comprises three main components: the EH
Database, the Repair Agent, and the Validate Agent. The EH Database aids LLMs in understanding
and fixing errors using retrieval-augmented technology. The Repair Agent identifies the error
propagation path of an PEH bug, and generates patches accordingly, whereas the Validate Agent
scrutinizes and guides the refinement of these patches.
This design faces two primary technical challenges. First, although our study in Sec. 2 has

significantly reduced the input data, the remaining volume can still impair the performance of
LLMs and increase computational costs. Second, tracing error propagation across multiple functions
step-by-step is inherently time-consuming and resource-intensive. To address the first challenge,
we developed the EH Database, which features summarization methods designed specifically for
different types of contextual information, effectively shortening the input length. For the second
challenge, we address this by employing clustering techniques that allow for the collective repair

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

Error Delayed Is Not Error Handled: Understanding and Fixing Propagated Error-Handling Bugs FSE114:7

Patch for
Single Function

Error-Handling
Strategy Selection

Repair Agent

Patch Generation
Validate Agent

Patch Plausibility
Filtering

Bug Location

EH Database

Error Propagation
Analysis

Project Source Code

EH Database
Construction

Fig. 2. Overview of EH-Fixer.

of functions with similar contextual information during a single LLM interaction, thus decreasing
both interaction frequency and token usage.
Note that, EH-Fixer operates based on static analysis in conjunction with LLMs, allowing it to

analyze software without compilation. This feature enables EH-Fixer to be used during software
development.

3.1 EH Database
As outlined in Sec. 2, fixing PEH bugs necessitates tracing the error propagation path, comprehend-
ing its impact, and choosing the appropriate action set that aligns with the handling strategy of the
target software. To this end, the dataset must encapsulate three types of contextual information
from the target software: function semantics and dependencies, available handling actions, and
illustrative examples that mirror the error-handling strategy used in the software. The primary
technical challenge lies in representing this information with clarity and precision. EH-Fixer tackles
this challenge by conducting an inter-procedural static analysis1 and applying distinct extraction
methods for each type of information. We depict an example of the three types of information in
the EH Database in Fig. 3.

3.1.1 Semantics and Dependencies. In the context of function semantics and dependencies, the
Repair Agent primarily utilizes this information to aid LLMs in tracing error propagation paths,
identifying origins, and analyzing impacts. The EH Dataset initially stores the source code for each
function. Upon retrieval for analysis, EH-Fixer applies the Chain of Thought (COT) methodology
during the analysis, and will first generates a natural language summary detailing inputs, outputs,
and logic (data 1 in Fig. 3). This summary is stored in the EH Dataset and is directly provided when
the function is subsequently retrieved. Furthermore, EH-Fixer constructs function call graphs and
data/control dependency graphs via inter-procedural static analysis (data 2 in Fig. 3). These graphs
aid in the tracing of error propagation and program slicing on code snippets related to the error.

3.1.2 Available Action. Turning to the second category of information, LLMs should be aware of
the available handling actions in the current software to make informed decisions. Logging actions
and returning actions, which typically can be identified by specific keywords [19, 25, 31, 50], are less
1The specific details and examples of the static analysis can be found in link. [2]

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

FSE114:8Haoran Liu, Shanshan Li, Zhouyang Jia, Yuanliang Zhang, Linxiao Bai, Si Zheng, Xiaoguang Mao, and Xiangke Liao

1 static int max1111_read(...) {
 ...
2 err = spi_sync(data->spi, &data->msg);
3 if (err < 0) {
4 dev_err(...,"spi_sync failed",...);
5 mutex_unlock(&data->drvdata_lock);
6 return err;
7 }
 ...
8 }

Semantics and Dependencies
1)Summary: "This function reads data from the
MAX1111 ADC device for a specified channel.
It locks a mutex, configures the transmission
buffer, sends a SPI command, and retrieves
the result. If the response is valid, it
processes and returns the data; otherwise, it
returns an error code."
2)CallGraph, Data/Control Dependencies Graph

Available Action
3)Cleanup: (max1111_data->drvdata_lock,
mutex_unlock)
4)Logging: ("/drivers/hwmon", dev_err)
5)Return: ("/drivers/hwmon", "-EINVAL")

Error Impact & Action set
6)<"SPI transmission failure", ("Logging",
"Resource cleanup", "Early stop")>
7)<"Cannot pass input data for caller
functions", ("Propagate error")>

Source Code

EH Dataset

Fig. 3. Construction of EH Database.

diverse. Conversely, cleanup functions show more diversity and are scattered across error-handling
code snippets, posing a challenge for direct representation to LLMs. EH-Fixer systematically extracts
these actions from existing error-handling code snippets in three steps. Initially, EH-Fixer utilizes
the method outlined in Sec. 2.1.2 to collect existing error-handling code snippets, and document
their return values. Subsequently, EH-Fixer categorizes functions containing keywords such as "log"
or "err" in hard-coded strings as logging actions, while it considers other function invocations as
cleanup actions. The impact of such a simple classification method on the performance of EH-Fixer
will be discussed in Sec. 4.1.2. Finally, EH-Fixer establishes relationships between cleanup actions
and specific resource types based on data/control dependencies. For example, in Fig. 3, EH-Fixer first
identifies the error-handling code snippet in line 3-6, and document its return value in line 6. Since
it returns the return value of 𝑠𝑝𝑖_𝑠𝑦𝑛𝑐 (line 2, 6), EH-Fixer retrieves the return value of function
𝑠𝑝𝑖_𝑠𝑦𝑛𝑐 , and stores it with the file path of𝑚𝑎𝑥𝑙𝑙𝑙𝑙_𝑟𝑒𝑎𝑑 (data 5). Similarly, EH-Fixer identifies
the logging function 𝑑𝑒𝑣_𝑒𝑟𝑟 and correlates it with the same file path (data 4). Finally, we record
the𝑚𝑢𝑡𝑒𝑥_𝑢𝑛𝑙𝑜𝑐𝑘 with the datatype of its input variable 𝑑𝑎𝑡𝑎→𝑑𝑟𝑣𝑑𝑎𝑡𝑎_𝑙𝑜𝑐𝑘 (data 3). For each
cleanup function, EH-Fixer archives up to𝑇𝐻𝑒 code snippets as examples to help LLMs understand
its applications. The threshold 𝑇𝐻𝑒 will be discussed in Sec. 4.3. When retrieving available actions,
EH-Fixer may identify multiple actions of the same type, such as several logging functions. All
these actions will be returned and provided to the LLM.

3.1.3 Error-Handling Strategy. Regarding the third category of information, in line with Finding 2
and 3, selecting the appropriate handling action set necessitates comprehension of both the error
impact, and the handling strategy of the current software. EH-Fixer analyzes existing error-handling
code snippets to study the relationships between the error impact and the associated handling
action set. These relationships serve as demonstrative examples of the handling strategy. Referring
to Finding 5, functions within the same error propagation path or the same file usually have a similar
action set. Consequently, EH-Fixer learns the handling strategy of the target software from these
functions. To achieve this, we utilize an LLM to analyze existing error-handling code snippets and
summarize data pairs of <Error Impact, Action Set>. These pairs aid LLMs in grasping the handling
strategies through the In Context Learning (ICL) technique. Specifically, EH-Fixer constructs these
data pairs in 3 steps. Initially, for each existing error-handling code snippet, EH-Fixer establishes

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

Error Delayed Is Not Error Handled: Understanding and Fixing Propagated Error-Handling Bugs FSE114:9

func_1

func_2

func_3

func_1

func_4

func_2

func_1

Fig. 4. Error propagation path construction.

func_5

func_6 func_7

 + if (err)
 + return -ENOMEM;

Fig. 5. Error propagation path extension.

the propagation path for each error-handling code snippet as described in Sec. 3.2.1. Following
Finding 5, EH-Fixer then retrieves relevant contextual information, and summarizes a natural
language describing the error impact using LLMs. Finally, EH-Fixer utilizes LLMs to analyze and
pair error impacts with handling action set, outputting as <Error Impact, Action Set>. For instance,
as shown in Fig. 3, the impact on the buggy function (𝑚𝑎𝑥𝑙𝑙𝑙𝑙_𝑟𝑒𝑎𝑑) necessitates logging and
an early termination (data 6). A failure in𝑚𝑎𝑥𝑙𝑙𝑙𝑙_𝑟𝑒𝑎𝑑 could hinder its caller from obtaining a
valid device, thus necessitating error propagation (data 7). To minimize unnecessary overhead, the
EH-Fixer only learns these data pairs when an error-handling code snippet is retrieved.

The EH-Database is designed to store the error-handling strategies of target software, and needs
to be rebuilt for different software. The database is constructed using automated static analysis,
with interaction with the LLM occurring only when relevant code snippets are retrieved. As a result,
the rebuilding process is simple and fast. For example, the EH-Database for software containing
250,000 lines of code can be built in under 5 minutes on an i9-10900K CPU.

3.2 Repair Agent
The Repair Agent, powered by LLMs, undertakes two primary tasks: analyzing error propagation
paths and generating patches. This section outlines the technical challenges associated with these
tasks and describes our solutions.

3.2.1 Error Propagation Path Analysis. The Repair Agent analyzes the error propagation path
through the call graph. The main technical challenge is that functions in the error propagation
path need to be fixed according to their parent nodes. For instance, as illustrated in Fig. 1, callers
of𝑚𝑐ℎ𝑝23𝑘256_𝑤𝑟𝑖𝑡𝑒 necessitate repairs only if𝑚𝑐ℎ𝑝23𝑘256_𝑤𝑟𝑖𝑡𝑒 itself has been successfully
repaired and returns an error code. To address this challenge, the Repair Agent first constructs the
error propagation path, and then repairs it step-by-step from the root node.

When a bug location is provided to the Repair Agent, it may not necessarily be the root node of
the error propagation path. The Repair Agent constructs the propagation path based on two criteria:
1) A node that does not handle return values or parameters of custom functions is identified as the
root node. 2) Nodes that neither return values nor alter their parameters are considered leaf nodes.
As illustrated in Fig. 4, with 𝑓 𝑢𝑛𝑐_1 as the input bug location, the Repair Agent first identifies the
root node 𝑓 𝑢𝑛𝑐_2, and subsequently locates 𝑓 𝑢𝑛𝑐_3 and 𝑓 𝑢𝑛𝑐_4. After the above steps, the Repair
Agent analyzes the nodes along the error propagation path and generates corresponding patches.
If these patches cause further error propagation, the Repair Agent will expand the propagation
path. Using Fig. 5 as an example, since the patch for 𝑓 𝑢𝑛𝑐_5 returns “-ENOMEM”, causing the
error to propagate to its callers. As a result, the Repair Agent includes 𝑓 𝑢𝑛𝑐_6 and 𝑓 𝑢𝑛𝑐_7 to the
propagation path. The Repair Agent does not consider error propagation involving global variables.
This is a trade-off between accuracy and recall, which is discussed in Sec. 5.3.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

FSE114:10Haoran Liu, Shanshan Li, Zhouyang Jia, Yuanliang Zhang, Linxiao Bai, Si Zheng, Xiaoguang Mao, and Xiangke Liao

Action Set

Exisiting Error-Handling
Code Snippets

Error-Handling Bug
Error Impact

Action Set

Error Impact
In Context
Learning

Patch

EH Database

Fig. 6. Patch generation.

3.2.2 Patch generation. For each function in the propagation path, the Repair Agent first evaluates
the error impact, then predicts a set of handling actions considering the error-handling strategy of
the current software, and eventually retrieves available actions from the EH Database to generate
patches. As shown in Fig. 6, the main idea of this step is to derive <Error Impact, Action Set>
relationship pairs by learning relevant error-handling code snippets, and guide LLMs to predict the
appropriate action set based on the error impact through ICL. This process presents two technical
challenges. Firstly, PEH bugs effect multiple functions. Our experiments indicate that repairing all
affected functions in a single LLM session is difficult, and individual analysis of functions leads
to increased overhead. Secondly, the extensive retrieval of contextual information, particularly
regarding cleanup actions, results in significant unnecessary costs.
To tackle the first challenge, we conduct studies on 96 PEH bugs discussed in Sec. 2. We find

that many functions along the propagation path have similar contexts. Independently repairing
these functions entails redundant context provision to LLMs, thus unnecessarily increasing com-
putational overhead. To streamline this process, we grouped functions by context similarity and
implemented collective repairs within a single session. Specifically, as discussed in Sec. 3.1, LLMs
necessitate three contextual inputs for repairs: summaries of relevant functions, code snippets
having data/control dependencies with the error, and data pairs describing the error-handling
strategy of the target software. We use the Jaccard coefficient [52] to quantify the contextual
similarity between two functions. Defined by the formula 𝐽 (𝐴, 𝐵) = |𝐴∩𝐵 |

|𝐴∪𝐵 | , this metric calculates the
proportion of shared to total unique contexts, offering a concise quantification of contextual overlap
between functions. Utilizing the Agglomerative Hierarchical Clustering (AHC) technique [24], we
clustered the functions with a distance threshold (𝑇𝐻𝑑) set at 0.4. Functions that are in the same
cluster are fixed collectively. The rationale behind the chosen value of 𝑇𝐻𝑑 is discussed in Sec. 4.4.
Regarding the second challenge, the Repair Agent instructs LLMs to provide feedback on the

resources that require cleanup, and supplies only the relevant cleanup functions. Furthermore,
the Repair Agent simplifies the action set to a combination of three types of handling actions.
For example, code snippets containing only the logging action are considered to have the same
action set. For each type of action set, the Repair Agent will only retrieve up to 𝑇𝐻𝑒 code snippets
from the EH Database. Consequently, the total number of input code snippets will not exceed
𝑇𝐻𝑒 ∗ 7 (calculated as 𝐶 (3, 1) + 𝐶 (3, 2) + 𝐶 (3, 3)). The parameter setting is discussed in Sec. 4.4.
These approaches can reduce a lot of unnecessary inputs and can effectively reduce the overhead.

The prompt of Repair Agent comprises 4 components, including Instruction, Contextual
Information, Constraint, and Example. The Instruction guides LLMs to analysis the error
impact, predict the appropriate handling action set, and generate patches. The Example contains
data pairs for In Context Learning (ICL) (discussed in Sec. 3.1.3). Contextual Information retains

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

Error Delayed Is Not Error Handled: Understanding and Fixing Propagated Error-Handling Bugs FSE114:11

semantics and dependencies related to the error (discussed in Sec. 3.1.1). Constraint restricts
LLMs from outputting extraneous information and specifies the format of the output. If additional
information is required during patch generation, EH-Fixer retrieves and supplies the relevant
information to LLMs (discussed in Sec. 3.1.2). Throughout this process, LLMs receive only the
source code of the buggy function and the predicted set of handling actions as historical data.

Algorithm 1 Generate patches for a PEH Bug
Require: Bug location BugLocation
Ensure: Generate patches for PEH bugs
1: Initialize RepairList and PatchList
2: RepairList = 𝑔𝑒𝑡_𝑒𝑟𝑟𝑜𝑟_𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛_𝑝𝑎𝑡ℎ(BugLocation)
3: while not RepairList.isEmpty() do
4: Let ContextInfo = EHDataset(RepairList)
5: Let RepairCluster = RepairList.cluster().𝑠𝑜𝑟𝑡_𝑎𝑛𝑑_𝑝𝑜𝑝()
6: Let InfoRetrieval, Patch, NewRepairList = RepairAgent(𝑓 𝑜𝑟𝑚_𝑝𝑟𝑜𝑚𝑝𝑡 (RepairCluster, Contex-

tInfo))
7: while not InfoRetrieval.isEmpty() do
8: Let AdditionalInfo = EHDataset(InfoRetrieval)
9: InfoRetrieval, Patch, NewRepairList = RepairAgent(AdditionalInfo)
10: end while
11: ValidationResult = ValidateAgent(Patch)
12: while not ValidationResult.isEmpty() do
13: Patch = RepairAgent(ValidationResult)
14: ValidationResult = ValidateAgent(SinglePatch)
15: end while
16: PatchList.append(Patch)
17: RepairList.extend(NewRepairList)
18: end while
19: return PatchList

3.3 Validate Agent
Verifying the correctness of generated patches is a challenge faced by all APR methods. Even with
test cases, these methods can only produce plausible patches, and the presence of bugs still requires
manual verification. Therefore, EH-Fixer is designed to generate plausible patches. Due to the lack of
sufficient test cases, the Validate Agent leverages static analysis and LLMs to assess the plausibility
of these patches. The main challenge is to design the criteria for the check. To address this challenge,
we attempted to fix all 153 historical PEH bugs in the study with the Repair Agent, and analyzed
600 incorrect patches generated by LLMs. Our analysis indicated that: 52.8% (317/600) of incorrect
patches used non-existent return values; 43.3% (260/600) referenced non-existent cleanup functions;
43.1% (259/600) included irrelevant modifications. Consequently, the Validate Agent scrutinizes
patches for fabricated function calls and return values based on specified keywords, and assesses
unnecessary modifications via LLMs.

First, the Validate Agent examines error-handling actions within the input patch. If they are not
included in the input of the Repair Agent, the Validate Agent assumes that they are made-up and
returns these mistakes. Subsequently, the Validate Agent checks the patch using LLMs for irrelevant
modifications and returns found mistakes. Similar to the Repair Agent, the prompt of the Validate

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

FSE114:12Haoran Liu, Shanshan Li, Zhouyang Jia, Yuanliang Zhang, Linxiao Bai, Si Zheng, Xiaoguang Mao, and Xiangke Liao

Agent consists of 2 components, including Instruction and Constraint. The Instruction describes
the buggy function and code snippets, the input patch, and guides LLMs to confirm whether the
patch fixes only the target error-handling bug. The Constraint directs LLMs to produce outputs in
a structured format.

We detail the EH-Fixer method for addressing PEH bugs in Algorithm 1. BugLocation serves as the
input, providing the location of the error-handling bug. EH-Fixer constructs the error propagation
path, logs all affected functions in RepairList (action 2), and stores generated patches in PatchList.
It retrieves contextual information from the EH Dataset (action 4), clusters the RepairList, and
selects the largest cluster RepairCluster that closest to the root node (action 5). EH-Fixer constructs
prompts for functions in RepairCluster, which are then processed by the RepairAgent (action 6). If
the RepairAgent requires more information, it initiates InfoRetrieval (action 7), and data is fetched
from the EH Database (action 8) to continue the repair(action 9). The RepairAgent generates the
Patch, which is reviewed by the Validate Agent (action 11). If modifications are needed, the patch is
updated by the RepairAgent (actions 13 and 14). Finally, EH-Fixer secures the validated patch in
PatchList (action 16) and updates the RepairList (action 17). This process is repeated 𝑇𝐻𝑝 times,
and this parameter is discussed in Sec. 4.4.

4 Experiment
We conduct experiments to evaluate our approach by answering the following research questions:

• RQ1: How does EH-Fixer performs on real-world PEH bugs?
• RQ2: Does EH-Fixer outperform SOTA approaches?
• RQ3: How does each design affect the performance of EH-Fixer?
• RQ4: How do parameters affect the performance of EH-Fixer?

The experiments were conducted on a machine running Linux-18.04 with 64GB of RAM and an
Intel i9-10900K CPU.

4.1 Answer to RQ1: Performance on Real-World PEH Bugs
In this section, we evaluate the performance of EH-Fixer on real-world PEH bugs through experi-
ments conducted on the Linux Kernel and open-source applications.

4.1.1 Experiment Setup. As shown in Table 2, we evaluated EH-Fixer on the Linux Kernel and 9
open-source applications across different domains. Each application has over 500 stars on GitHub
and is distinct from those in our study. Our evaluation consists of two main parts: fixing new PEH
bugs and addressing historical PEH bugs. On the one hand, we used an existing approach [31] to
detect error-handling bugs in the Linux Kernel, and repaired them using EH-Fixer. Newly discovered
PEH bugs, which involve multiple function fixes, were reported to the developers. On the other
hand, following the methods outlined in Sec. 2.1.2, we collected 44 historical PEH bugs from the
Linux Kernel, and 45 from the applications, involving 125 and 108 buggy functions respectively.
It is important to note that a total of 88 PEH bugs were collected from the Linux Kernel, with 44
bugs used for research and 44 used for experimentation. These two sets of bugs are from different
modules of the Linux Kernel.
To evaluate the efficacy of EH-Fixer, we restored the source code of each historical PEH bug

to its pre-repair state to ascertain whether EH-Fixer could generate patches that are semantically
equivalent to the original fixes. Notably, some patches for historical bugs might have been included
in the LLM training dataset. To mitigate the risk of data leakage, we segregated the historical
bugs by the training cut-off time of the LLM. Given that EH-Fixer utilizes gpt-4-0613, we selected
September 2021 as the cutoff time [47]. Consequently, we categorized the historical PEH bugs into
two groups: 71 (37+34) and 18 (7+11) bugs, respectively. For historical PEH bugs prior to the training

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

Error Delayed Is Not Error Handled: Understanding and Fixing Propagated Error-Handling Bugs FSE114:13

Table 2. Performance on real-world PEH bugs.

Domain Name PEH Bugs Precision Repair Rate

Operating System Linux Kernel 44 68.6%(151/220) 81.8%(36/44)
Networking OpenVPN 11 74.5%(41/55) 81.8%(9/11)

Developer Tools ESP-IDF 7 77.1%(27/35) 85.7%(6/7)
BPF Compiler Collection 4 75.0%(15/20) 75.0%(3/4)

Database Redis 6 73.3%(22/30) 83.3%(5/6)

Window Manager Sway 5 68.0%(17/25) 80.0%(4/5)
Mutter 2 70.0%(7/10) 100.0%(2/2)

Emulator iSH 4 95.0%(19/20) 100.0%(4/4)
Media HandBrake 4 65.0%(13/20) 75.0%(3/4)

Data Transfer Tool Curl 2 90.0%(9/10) 100.0%(2/2)

cut-off time, we adopted the methodological of existing studies [69] and manually transformed the
code to ensure equivalence. This transformation includes changes to function and variable names,
as well as code structure. For instance, we may rename “𝑓 𝑟𝑒𝑒_𝑝𝑎𝑔𝑒” to “𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑝𝑎𝑔𝑒_𝑚𝑒𝑚𝑜𝑟𝑦”,
reverse a condition like “𝑎 > 𝑏” to “𝑏 < 𝑎”, or rewrite “𝑖 𝑓 (𝑎){𝑠1}𝑒𝑙𝑠𝑒{𝑠2}” as “𝑖 𝑓 (!𝑎){𝑠2}𝑒𝑙𝑠𝑒{𝑠1}”.
Afterward, we use a separate LLM to check if it can identify the original source of the code. If the
LLM fails to recognize it, we consider the transformation valid and use it in our experiment.
We set the thresholds 𝑇𝐻𝑒 (in Sec. 3.2.2), 𝑇𝐻𝑑 (in Sec. 3.2.2), and 𝑇𝐻𝑝 (in Sec. 3.3) to 3, 0.4,

and 5, respectively. The rationale behind these parameter settings is discussed in Sec 4.4. We use
evaluation metrics commonly used in program repair, including precision and repair rate. Precision
represents the ratio of correct patches to the total number of generated patches, whereas the repair
rate indicates the proportion of successfully repaired bugs. A bug is considered successfully repaired
if at least one candidate patch is correct.

4.1.2 Experiment Result. We used EH-Fixer to fix 34 newly detected error-handling bugs in the
Linux Kernel, and found that the fixes for 9 of them involved multiple functions (PEH bugs). We
submitted these patches to the developers. Currently, 2 have been confirmed, while the rest are still
under review. As for the historical bugs, the results are shown in Table 2. On the Linux Kernel, EH-
Fixer achieved a repair rate of 81.8% (36/44) with a precision of 68.6% (151/44*5). As for applications,
it achieved a repair rate of 84.4% (38/45) with a precision of 75.6% (170/45*5). Note that, regarding
historical bugs, EH-Fixer achieved a precision of 72.7% (258/355) and a fix rate of 81.7% (58/71) on
the data before the training cut-off time. On the data after the training cut-off time, it achieved a
precision of 70.0% (63/90) and a repair rate of 88.9% (16/18). The performance of EH-Fixer on these
two types of data is similar, suggesting that the experimental results were not notably affected by
the data leakage problem.

EH-Fixer failed to fix 15 PEH bugs, which we have classified into 3 categories. Firstly, some errors
propagate through global variables. EH-Fixer trade-offs precision and repair rate to drop this case.
As a result, it causes 2 buggy function in 2 PEH bug to be missed. We will discuss this trade-off in
Sec. 5.3. Secondly, static analysis may be inaccurate. EH-Fixer performs static analysis based on
AST without compiling the target software system. This allows EH-Fixer to be used in the software
development phase, but it also causes it to perform less well than compilation-based methods. This
resulted in 8 buggy functions in 5 PEH bugs were not found. Finally, 8 PEH bugs were not fixed due
to the lack of relevant information. The propagation path of PEH bugs contains multiple functions,
and a single inappropriate prediction of handling action set can cause the fix to fail. These 8 PEH
bugs contained 22 buggy functions, and their propagation path affected 119 functions. Among these,

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

FSE114:14Haoran Liu, Shanshan Li, Zhouyang Jia, Yuanliang Zhang, Linxiao Bai, Si Zheng, Xiaoguang Mao, and Xiangke Liao

Table 3. Comparison in real-world bugs.

Precision Repair Rate

ChatRepair 13.7%(61/445) 14.6%(13/89)
ErrDoc 28.3%(126/445) 30.3%(27/89)
RLCE 38.0%(169/445) 42.7%(38/89)

EH-Fixer 72.1%(321/445) 83.1%(74/89)

12 buggy functions have less than 3 error-handling code snippets retrieved from the EH Dataset,
and therefore are failed to be fixed by EH-Fixer. Note that, although a simple approach using
keywords was employed for classifying logging actions, no repair failures due to misclassification
were observed in the experiments. This is because logging functions and return statements often
repeat within the same file or error propagation path, so occasional misclassification of logging
actions does not impact the repair process.

Result 1: EH-Fixer has successfully repaired 9 new PEH bugs, with 2 confirmed by devel-
opers and the rest currently under review. In addressing historical bugs from the Linux
Kernel and applications, EH-Fixer demonstrated its effectiveness in fixing real-world PEH
bugs by achieving a repair rate of 83.1% (74/89).

4.2 Answer to RQ2: Comparison with the State-of-the-art
This section presents a comparison of EH-Fixer against SOTA approaches, focusing primarily on
PEH bugs. Due to the lack of test cases, general-purpose APR techniques can hardly be used to
fix error-handling bugs, let alone PEH bugs. Therefore, we compare our approach with existing
approaches designed for error-handling bug fixes. Furthermore, we include several LLM-based
APR approaches in our comparative experiments, as these can implement repairs using feedback
information like the test outcome.

4.2.1 Experiment Setup. EH-Fixer was evaluated against three SOTA methods: a template-based
error-handling bug repair approach ErrDoc [55], and two LLM-based APR approaches, ChatRe-
pair [63] and RLCE [10]. ErrDoc identifies the type of error-handling bug and addresses it by
duplicating adjacent error-handling code snippets. ChatRepair produces candidate patches by
continuously integrating test results into LLMs, Whereas RLCE retrieves relevant code snippets
from the software source code, assisting LLMs in implementing repairs.

We utilized the 89 (44+45) historical PEH bugs discussed in Sec. 4.1 as the test data, and employed
precision and repair rate as evaluation metrics. Since these compared approaches were not specifi-
cally designed for PEH bugs, this study explores their theoretical maximum performance. ErrDoc
and RLCE, which primarily target single-hunk repairs, were provided with all buggy functions
(125+108) within the error propagation path. A PEH bug was deemed resolved if all supplied buggy
functions were successfully repaired. As for ChatRepair, since it can be applied to multi-hunk
repair, we provided it with the entire error propagation path, and used the compile result as the test
outcome. To maintain fairness, both ChatRepair and RLCE were replicated using the gpt-4-0613
model as EH-Fixer, generating five candidate patches per PEH bug.

4.2.2 Experiment Result. The experimental results, as shown in Table 3, indicate that EH-Fixer
exhibits superior performance in repairing PEH bugs, achieving a 40.4% increase in repair rates
(from 42.7% to 83.1%). 48.6% (36/74) PEH bugs fixed by EH-Fixer cannot be fixed by all comparative

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

Error Delayed Is Not Error Handled: Understanding and Fixing Propagated Error-Handling Bugs FSE114:15

1 if (ret<0){
2 dev_dbg(...);
3 goto err;
4 }

5 - input_register_device(...);
6 + ret = input_register_device(...);
7 + if (ret){
8 + dev_dbg(...);
9 + goto err_irq
10+ }
11+ err_irq:
12+ free_irq(...);
13 err:
14 return ret;

Nearby Error-Handling
Code Snippet

Fig. 7. Case study.

approaches. ChatRepair successfully addressed only 13 PEH bugs with a precision of 13.7%. This
low performance stems from two issues: First, the lack of context often causes ChatRepair to select
inappropriate action sets. Second, the error-handling code snippet is rarely covered by test cases.
This makes it challenging to ensure the quality of generated patches based solely on the “passes
compilation” criterion. Consequently, ChatRepair frequently produces patches that compile but are
incorrect. The performance of ErrDoc on PEH bugs is also limited. This is because that ErrDoc fills
templates with handling actions copied from nearby error-handling code snippets. This method
led to 38 failed fixes due to unsuitable actions from nearby snippets. Additionally, it caused 24
failed fixes because some required error-handling actions were absent in the nearby snippets. RLCE
employs a retrieval-augmented strategy to identify relevant function definitions and usages, slicing
code snippets that exhibit data or control dependencies with errors from the buggy function and its
callers. These snippets, as a subset of the context information—semantics and dependencies—within
EH-Fixer, help LLMs understand the error impact. Therefore, RLCE achieves higher performance
than the other two comparison approaches. However, RLCE failed to fix 51 PEH bugs. On the one
hand, it still lacks some essential contexts, including available actions, and illustrative examples of
the error-handling strategy. This deficiency can lead RLCE to select inappropriate action sets. On
the other hand, RLCE does not validate the generated patches, occasionally resulting in irrelevant
changes.
To illustrate our contribution, we conducted a case study. Fig. 7 illustrates a patch for the

Linux Kernel, it fixes one of the functions affected by a PEH bug. This patch includes a logging
function 𝑑𝑒𝑣_𝑑𝑏𝑔 (line 8) and a resource cleanup function 𝑓 𝑟𝑒𝑒_𝑖𝑟𝑞. None of the three comparison
approaches succeeded in generating this patch. ChatRepair, provided with all functions along the
error propagation path, attempted to modify the target function only once in five tries but did
not succeed. ErrDoc, using only the buggy function as input, identified 𝑑𝑒𝑣_𝑑𝑏𝑔 but overlooked
𝑓 𝑟𝑒𝑒_𝑖𝑟𝑞. RLCE, similarly using the buggy function as input, failed to recognize the need to use the
cleanup action. ChatRepair struggle to identify this function due to the lack of error propagation
path analysis. Moreover, these approaches cannot select the appropriate handling action sets
because 𝑓 𝑟𝑒𝑒_𝑖𝑟𝑞 is not retrieved. In contrast, EH-Fixer, accessing this function along the error
propagation path in all five attempts, successfully retrieved 𝑓 𝑟𝑒𝑒_𝑖𝑟𝑞, leading to effective repairs in
every instance.

Result 2: The repair rate of EH-Fixer outperformed comparative approaches in fixing PEH
bugs, and 48.6% (36/74) PEH bugs fixed by EH-Fixer cannot be fixed by all comparative
approaches.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

FSE114:16Haoran Liu, Shanshan Li, Zhouyang Jia, Yuanliang Zhang, Linxiao Bai, Si Zheng, Xiaoguang Mao, and Xiangke Liao

Table 4. Ablation study.

Input Token Precision Repair Rate

EH-Fixer-wp 11,075 17.3%(77/445) 29.2%(26/89)
EH-Fixer-wr 6,217 20.2%(90/445) 33.7%(30/89)
EH-Fixer-wc 23,020 76.2%(339/445) 83.1%(74/89)
EH-Fixer-wv 13,906 49.7%(221/445) 55.1%(49/89)
EH-Fixer 15,011 72.1%(321/445) 83.1%(74/89)

4.3 Answer to RQ3: Ablation Study
The design of EH-Fixer includes 4 key components: analyzing error propagation paths, employing
a retrieval-augmented technique, collectively fixing functions with similar contexts, and filtering
patches using the Validate Agent. We evaluate the impact of these components on the performance
of the EH-Fixer through an ablation study.

4.3.1 Experiment Setup. We developed 4 variants for this study: EH-Fixer-wp, EH-Fixer-wr, EH-
Fixer-wc, and EH-Fixer-wv. We removed the error propagation path analysis from EH-Fixer to
form EH-Fixer-wp. EH-Fixer-wp directly inputs all functions that have data/control dependencies
with the input function to LLMs, and requires LLMs to fix the PEH bugs within; We removed
the retrieval-augmented technique to construct EH-Fixer-wr. EH-Fixer-wr removes “Contextual
Information” and “Example” from the prompt, and no longer actively returns information that
requires additional retrieval; EH-Fixer-wc removes function clustering during patch generation,
and analyze only one function at a time; Lastly, we remove the Validate Agent from EH-Fixer to
form EH-Fixer-wv. EH-Fixer-wv considers a patch as plausible if it compiles successfully.

We applied these variants to 89 historical PEH bugs discussed in Sec.4.1. We selected precision,
repair rate, and cost as evaluation metrics. The cost metric assesses whether EH-Fixer can reduce
unnecessary computational expenses, measured by the average number of tokens inputted into
LLMs.

4.3.2 Experiment Result. We present the experimental results in Table 4. Firstly, EH-Fixer-wp
managed to repair only 26 PEH bugs. As discussed in Finding 1, PEH bugs typically affect an
average of 16.7 functions. Attempting repairs through a single interaction without considering
the propagation path of errors complicates the repair process. This requires LLMs to process
longer inputs and address multiple functions concurrently, often leading to incomplete or incorrect
fixes, and resulting in a significant performance drop. Secondly, EH-Fixer-wr only fixes 30 PEH
bugs, with a precision of 20.2%. This is consistent with the conclusion of Sec. 2.4 that contextual
information is critical for selecting the appropriate action set. Thirdly, although EH-Fixer-wc has a
similar performance to EH-Fixer, it uses tokens amounting to 153.4% of those used by EH-Fixer
(23,020/15,011). This is due to the aggregation of functions with similar contexts, which substantially
reduces the duplication of information and consequently decreases input length. The results suggest
that clustering methods can effectively reduce the computational overhead associated with repairs
without compromising performance. Finally, EH-Fixer-wv, despite successfully addressing 49
PEH bugs, demonstrates a notable performance decline compared to the EH-Fixer. This version
frequently uses fabricated function/variable names and induces extraneous modifications, such as
altering variable names or inserting unrelated code snippets. This result indicates that successful
compilation does not necessarily guarantee the plausibility of patches for error-handling bugs.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

Error Delayed Is Not Error Handled: Understanding and Fixing Propagated Error-Handling Bugs FSE114:17

2

Fig. 8. Performance under different 𝑇𝐻𝑒 and 𝑇𝐻𝑝 .

1

Fig. 9. Performance under different 𝑇𝐻𝑑 .

Result 3: Analyzing error propagation paths, employing a retrieval-augmented technique,
and filtering patches are critical for the performance of EH-Fixer. Employing clustering
methods can significantly decrease computational overhead without degrading perfor-
mance.

4.4 Answer to RQ4: Impact of Parameters
EH-Fixer requires three parameters to be pre-defined, including 𝑇𝐻𝑒 and 𝑇𝐻𝑑 in Sec. 3.2.2, and
𝑇𝐻𝑝 in Sec. 3.3. 𝑇𝐻𝑒 affects the number of error-handling code snippets retrieved during patch
generation. 𝑇𝐻𝑑 influences both the number and size of clusters, impacting the collective repair
of functions. 𝑇𝐻𝑝 controls the quantity of candidate patches. All these parameters can impact
the performance of EH-Fixer. This section evaluates how variations in 𝑇𝐻𝑒 , 𝑇𝐻𝑑 , and 𝑇𝐻𝑝 affect
EH-Fixer.

4.4.1 Experiment Setup. We applied EH-Fixer to the 89 historical PEH bugs detailed in Sec. 4.1, and
evaluated its precision and repair rate with different parameter settings. Initially, we set 𝑇𝐻𝑒 , 𝑇𝐻𝑑 ,
and 𝑇𝐻𝑝 to 3, 0.4, and 5, respectively. We then fixed two parameters and adjusted the remaining
one. Specifically,𝑇𝐻𝑒 and𝑇𝐻𝑝 were varied from 1 to 10 in increments of 1, and𝑇𝐻𝑑 ranged from 0
to 1 in increments of 0.1.

4.4.2 Experiment Result. The results are depicted in Fig. 8 and Fig. 9. As 𝑇𝐻𝑒 increases, both the
precision and repair rate of EH-Fixer increase significantly. After 𝑇𝐻𝑒 reaches 3, the repair rate
remains stable, while the precision rate fluctuates slightly. This is because these error-handling code
snippets can help LLMs understand the usage of each available action. However, after 𝑇𝐻𝑒 exceeds
7, the precision and repair rates of EH-Fixer decrease. This is likely because error-handling code
snippets tend to be repetitive. Excessive code, while not contributing additional context, augments
the input size and may impair LLM performance. To minimize this overhead, we set 𝑇𝐻𝑒 to 3. As
𝑇𝐻𝑝 increases, the precision of EH-Fixer remains stable. This is because we simply run EH-Fixer
repeatedly. Variability in LLM outputs does not affect this consistency, as the Validation Agent
ensures stable precision. Conversely, the repair rate initially increases significantly as𝑇𝐻𝑝 rises and
then stabilizes once𝑇𝐻𝑝 reaches 5. This result indicates that multiple iterations are necessary to fix
some PEH bugs. Given that more outputs require developers to review more patches, we set𝑇𝐻𝑝 at
5 to optimize the balance between the repair rate and the volume of outputs. As the threshold 𝑇𝐻𝑑

increases, the precision and repair rate of the method remains stable. However, when 𝑇𝐻𝑑 exceeds
0.4, both precision and repair rate begin to decline significantly. This decline can be attributed to

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

FSE114:18Haoran Liu, Shanshan Li, Zhouyang Jia, Yuanliang Zhang, Linxiao Bai, Si Zheng, Xiaoguang Mao, and Xiangke Liao

the impact of 𝑇𝐻𝑑 on clustering: a high threshold can result in excessively large clusters, which
diminish the performance of EH-Fixer.

Result 4: 𝑇𝐻𝑒 , 𝑇𝐻𝑑 and 𝑇𝐻𝑝 influence the performance of EH-Fixer. To balance the repair
rate against overhead, we set 𝑇𝐻𝑒 , 𝑇𝐻𝑑 , and 𝑇𝐻𝑝 to 3, 0.4, and 5, respectively.

5 Discussion
5.1 Generalizability
Both the survey and the experiments utilized PEH bugs from the Linux Kernel and high-star repos-
itories on GitHub. Due to the significantly larger codebase of the Linux Kernel, a notable portion of
the data was sourced from it, accounting for 28.8% (44/153) and 49.4% (44/89), respectively. The
high proportion of data derived from the Linux Kernel could potentially affect the generalizability
of our study and method.
Regarding the generalizability of the study, we present the data for both the Linux Kernel and

other applications separately in link [3]. While there are minor differences—such as PEH bugs in
the Linux Kernel affecting an average of 21.3 functions, compared to 14.8 in other applications—the
characteristics of these PEH bugs are similar across both sets. These differences do not impact the
conclusions of the study or the design of our method.

As for the generalizability of our method, as detailed in Sec. 4.1, EH-Fixer achieved similar repair
rates (81.8% for the Linux Kernel and 84.4% for other applications) and precision rates (68.6% for the
Linux Kernel and 75.6% for other applications). The slight decrease in performance on the Linux
Kernel is primarily due to the higher number of functions affected by PEH bugs, which makes them
more challenging to repair.

5.2 Static Analysis
To trace the relevant context and repair PEH bugs, EH-Fixer conducts program analysis on the AST
to construct data/control-flow dependencies. This design allows EH-Fixer to analyze code without
the need to compile the target project, and thereby can be applied to more projects automatically.
This approach may generate more erroneous results compared to tools requiring compilation, such
as LLVM. This is a trade-off between precision and scalability. According to the results of our
experiments in Sec. 4.1, the number of mistakes caused by program analysis is comparatively low
(4 buggy functions in 3 PEH bugs not been fixed). At present, EH-Fixer is implemented exclusively
for C/C++. EH-Fixer employs tree-sitter [8] to obtain the AST of the code. Since tree-sitter supports
more than 20 programming languages, EH-Fixer can be easily adapted to other programming
languages with minimal code modifications.

5.3 Error Propagation Path Analysis
According to Finding 2, errors are mainly propagated through function return values, pointer
parameters, and global variables. However, EH-Fixer excludes global variables when constructing
error propagation paths. This is because such cases are uncommon, accounting for only 2.8% of
the cases in the study (Sec. 2.3) and only causing one failed repair in our experiments (Sec. 4.1).
Static analysis struggles to accurately trace the propagation paths of global variables. Incorporating
global variables could marginally enhance the repair rate, yet it would substantially compromise
the precision. Therefore, we trade off repair rate for precision, and do not consider global variables.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

Error Delayed Is Not Error Handled: Understanding and Fixing Propagated Error-Handling Bugs FSE114:19

5.4 Patch Validation
Program repair typically depends on test cases to assess the plausibility of generated patches. How-
ever, the error-handling code snippet often features complex triggering conditions. For instance,
certain memory-related error handling requires a specific runtime environment. This complexity
results in a scarcity of test cases for these snippets, complicating the evaluation of patch plausibility
for error-handling bugs. We utilize developer-implemented error-handling code snippets as the
ground truth to understand the characteristics of incorrect patches generated by LLMs. These
characteristics serve as an oracle to develop the Validation Agent, which assesses the patch plausi-
bility. The experiments detailed in Sec. 4.3 demonstrate the efficacy of the Validate Agent in aiding
EH-Fixer to rectify error-handling bugs.

5.5 Language Limitation
EH-Fixer consists of two main components: static analysis and LLM interaction. The static analysis
is implemented using tree-sitter, which supports multiple programming languages, and the LLM
can be applied to other languages as well. Although EH-Fixer is currently designed for C/C++, it
can be extended to other languages with minimal modifications. Specifically, when extending to
different languages, the static analysis code needs to be adjusted to track data/control dependencies
according to the variations in AST structures.

6 Related Work
6.1 Error-Handling Bug Management
Research related to error-handling bugs has mainly focused on detection, existing methods for
detecting error-handling bugs can be broadly divided into two categories: those based on manually
constructed templates or error specifications, and those driven by learning-based approaches. In the
first category, these methods typically begin with an analysis from a specific perspective, identify
common patterns, and design corresponding templates [54, 64, 65, 68]. For instance, Tian and
Ray [55], Jana et al.[18], and Li et al.[30] classified error-handling bugs and designed templates
accordingly. Pakki et al.[48] studied cases where errors are handled too severely, while Wu et al.[62]
examined disordered handling. These approaches often require substantial domain knowledge and
struggle to adapt to software evolution. On the other hand, learning-based approaches typically
leverage existing error-handling code snippets to derive templates or error specifications. Several
studies [1, 12, 30, 32, 61, 70, 71] have explored the differences between normal paths and error paths,
using features like the length of paths and return expressions. Liu et al.[31] focused on learning
Error-Fault-Failure patterns from error-handling code snippets and performed inter-procedural
detection. Jia et al.[21] investigated the equivalence of check conditions, while Shen et al. [53]
concentrated on specific functions and pointers. These efforts are effective in detecting error-
handling bugs, but do not focus on how to fix them. This makes them only able to detect partial
functions in PEH bugs, and results in PEH bugs usually requiring several versions to be gradually
discovered and fixed. Only a few existing approaches further implements the repair, and they mainly
rely on manually defined templates. For example, ErrDoc [55] categorizes the error-handling bugs
and constructs templates individually, and achieves the repair by copying the nearby error-handling
actions. However, these approaches mainly focus on a single function, ignoring error propagation,
and thus making it difficult to address PEH bugs.
Exception-handling mechanisms like try-catch, which are built-in features in programming

languages such as Java and Python, have been extensively studied [6]. Existing approaches focus on
this problem from two perspectives: whether a correct exception is thrown, and whether the thrown
exceptions are properly handled. Some existing approaches [7, 9, 20, 46, 70] study whether a correct

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

FSE114:20Haoran Liu, Shanshan Li, Zhouyang Jia, Yuanliang Zhang, Linxiao Bai, Si Zheng, Xiaoguang Mao, and Xiangke Liao

exception is thrown, they usually studied the inconsistency of the error with the thrown exception.
Some existing approaches [5, 15, 29, 42, 45, 57, 58] study whether the thrown exception is properly
handled throw a data-flow analysis. These works focus on exception-handling mechanisms like
try-catch statements, while EH-Fixer fix bugs for error handling of variable constrain violation,
which is widely used in languages like C/C++.

6.2 Automatic Program Repair
Automated Program Repair (APR) is a key area in software engineering that has been the subject of
numerous studies [55]. Arcuri and Yao [4] originally proposed a basic framework for the co-evolution
of test cases and programs. Subsequent APR approaches like GenProg [59] have employed test
cases and heuristic/constraint to guide and select program variants for repair [13, 26–28, 36, 44, 60].
In the area of template-based methods [14, 17, 33, 43], TBar [34] stands out by integrating templates
from various sources to implement fixes. LSRepair [35], on the other hand, dynamically sources
repair components from the code repositories to address bugs.

Recent advancements in machine learning [38–41] have led to an increase in studies using deep
learning for program repair. This includes efforts to train repair models that transform the repair
process into a sequence-to-sequence (seq2seq) task [23, 37, 66, 67], as demonstrated by DeepFix [16]
and SequenceR [11]. The rise of large models has further enhanced these capabilities [22], with
some research directing LLMs to perform repairs by incorporating test results [63], or by using
retrieval-augmented techniques to provide more contextual information to LLMs [10]. Most related
research focuses on generic bug fixes, relying primarily on test cases, and is not readily applicable
to PEH bug repairs. EH-Fixer analyzes the characteristics of PEH bugs, directs LLMs to trace error
propagation, and selects suitable action sets for handling, thereby enhancing its effectiveness in
repairing PEH bugs.

7 Conclusion
This paper explores APR for PEH bugs. We studied 96 PEH bugs in the Linux Kernel and 10
applications, and summarized characteristics of error propagation and error-handling action. Based
on these studies, we propose EH-Fixer, an APR approach powered by LLMs. EH-Fixer works
by analyzing error propagation paths, and generating patches through a retrieval-augmented
technique. We applied EH-Fixer to the Linux Kernel and 9 applications. EH-Fixer fixed 9 new PEH
bugs, 2 of which have been confirmed by developers, and the remainder currently under review.
Meanwhile, EH-Fixer demonstrated a repair rate of 83.1% (74 /89), significantly outperforming
comparable approaches by fixing 48.6% (36/74) more PEH bugs. These results confirm EH-Fixer as
a SOTA approach for repairing PEH bugs.

8 Data Availability
The source code and dataset can be found in the repository:

https://github.com/EH-Fixer/EH-Fixer

9 Acknowledgements
This research was funded by NSFC No. 62272473, the Science and Technology Innovation Program
of Hunan ProvinceNo.2023RC1001 and No. 2023RC3012), NSFC No.U2441238 and No.62202474,
National University of Defense Technology Research Project No.ZK24-01, and State Key Laboratory
of Complex & Critical Software Environment, National University of Defense Technology.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

Error Delayed Is Not Error Handled: Understanding and Fixing Propagated Error-Handling Bugs FSE114:21

References
[1] Mithun Acharya and Tao Xie. 2009. Mining API error-handling specifications from source code. In International

Conference on Fundamental Approaches to Software Engineering. Springer, 370–384.
[2] Anon. 2025. Examples of Static Analysis and Key Prompts. https://github.com/EH-Fixer/EH-Fixer/blob/main/Example/

Example.pdf Accessed: 2025-02-23.
[3] Anon. 2025. Separate Results of the Study. https://github.com/EH-Fixer/EH-Fixer/blob/main/Study/Separate%20Result.

csv Accessed: 2025-02-23.
[4] Andrea Arcuri and Xin Yao. 2008. A novel co-evolutionary approach to automatic software bug fixing. In 2008 IEEE

Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). IEEE, 162–168.
[5] Eiji Adachi Barbosa and Alessandro Garcia. 2018. Global-aware recommendations for repairing violations in exception

handling. In Proceedings of the 40th International Conference on Software Engineering. 858–858.
[6] Pan Bian, Bin Liang, Yan Zhang, Chaoqun Yang, Wenchang Shi, and Yan Cai. 2018. Detecting bugs by discovering

expectations and their violations. IEEE Transactions on Software Engineering 45, 10 (2018), 984–1001.
[7] Islem Bouzenia. 2022. Detecting Inconsistencies in If-Condition-Raise Statements. In 37th IEEE/ACM International

Conference on Automated Software Engineering. 1–3.
[8] M. Brunsfeld. 2023. Tree-sitter. https://tree-sitter.github.io/tree-sitter/ Accessed 1. October 2021.
[9] Haicheng Chen. 2021. Combating Fault Tolerance Bugs in Cloud Systems. The Ohio State University.
[10] Yuxiao Chen, Jingzheng Wu, Xiang Ling, Changjiang Li, Zhiqing Rui, Tianyue Luo, and Yanjun Wu. 2024. When Large

Language Models Confront Repository-Level Automatic Program Repair: How Well They Done?. In Proceedings of the
2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings. 459–471.

[11] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys Poshyvanyk, and Martin Monperrus. 2019.
Sequencer: Sequence-to-sequence learning for end-to-end program repair. IEEE Transactions on Software Engineering
47, 9 (2019), 1943–1959.

[12] Daniel DeFreez, Haaken Martinson Baldwin, Cindy Rubio-González, and Aditya V Thakur. 2019. Effective error-
specification inference via domain-knowledge expansion. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering. 466–476.

[13] Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. 2014. Automatic repair of buggy if conditions
and missing preconditions with smt. In Proceedings of the 6th international workshop on constraints in software testing,
verification, and analysis. 30–39.

[14] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program repair via bytecodemutation. In Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. 19–30.

[15] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Jian Lü, and Zhendong Su. 2016. Automatic runtime recovery via error
handler synthesis. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering.
684–695.

[16] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. Deepfix: Fixing common c language errors by
deep learning. In Proceedings of the aaai conference on artificial intelligence, Vol. 31.

[17] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. 2018. Sketchfix: a tool for automated program repair
approach using lazy candidate generation. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. 888–891.

[18] Suman Jana, Yuan Jochen Kang, Samuel Roth, and Baishakhi Ray. 2016. Automatically Detecting Error Handling Bugs
Using Error Specifications.. In USENIX Security Symposium. 345–362.

[19] Zhouyang Jia, Shanshan Li, Xiaodong Liu, Xiangke Liao, and Yunhuai Liu. 2018. SMARTLOG: Place error log statement
by deep understanding of log intention. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 61–71.

[20] Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao, and Ji Wang. 2019. Automatically detecting missing cleanup
for ungraceful exits. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 751–762.

[21] Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao, Ji Wang, Xiaodong Liu, and Yunhuai Liu. 2019. Detecting
error-handling bugs without error specification input. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 213–225.

[22] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of code language models on automated program
repair. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 1430–1442.

[23] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. Cure: Code-aware neural machine translation for automatic program
repair. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 1161–1173.

[24] Stephen C Johnson. 1967. Hierarchical clustering schemes. Psychometrika 32, 3 (1967), 241–254.
[25] Van-Hoang Le and Hongyu Zhang. 2023. Log parsing with prompt-based few-shot learning. In 2023 IEEE/ACM 45th

International Conference on Software Engineering (ICSE). IEEE, 2438–2449.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

https://github.com/EH-Fixer/EH-Fixer/blob/main/Example/Example.pdf
https://github.com/EH-Fixer/EH-Fixer/blob/main/Example/Example.pdf
https://github.com/EH-Fixer/EH-Fixer/blob/main/Study/Separate%20Result.csv
https://github.com/EH-Fixer/EH-Fixer/blob/main/Study/Separate%20Result.csv
https://tree-sitter.github.io/tree-sitter/

FSE114:22Haoran Liu, Shanshan Li, Zhouyang Jia, Yuanliang Zhang, Linxiao Bai, Si Zheng, Xiaoguang Mao, and Xiangke Liao

[26] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser. 2017. S3: syntax-and semantic-guided
repair synthesis via programming by examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. 593–604.

[27] Xuan Bach D Le, David Lo, and Claire Le Goues. 2016. History driven program repair. In 2016 IEEE 23rd international
conference on software analysis, evolution, and reengineering (SANER), Vol. 1. IEEE, 213–224.

[28] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2011. Genprog: A generic method for
automatic software repair. Ieee transactions on software engineering 38, 1 (2011), 54–72.

[29] Yan Lei, Chengnian Sun, Xiaoguang Mao, and Zhendong Su. 2018. How test suites impact fault localisation starting
from the size. IET software 12, 3 (2018), 190–205.

[30] Chi Li, Min Zhou, Xinrong Han, and Ming Gu. 2021. Sensing Error Handling Bugs in SSL Library Usages. In 2021
IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). IEEE,
686–692.

[31] Haoran Liu, Zhouyang Jia, Shanshan Li, Yan Lei, Yue Yu, Yu Jiang, Xiaoguang Mao, and Xiangke Liao. 2024. Cut to the
Chase: An Error-Oriented Approach to Detect Error-Handling Bugs. Proceedings of the ACM on Software Engineering 1,
FSE (2024), 1796–1818.

[32] Huqiu Liu, Yuping Wang, Lingbo Jiang, and Shimin Hu. 2014. PF-Miner: A new paired functions mining method for
Android kernel in error paths. In 2014 IEEE 38th Annual Computer Software and Applications Conference. IEEE, 33–42.

[33] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. Avatar: Fixing semantic bugs with fix
patterns of static analysis violations. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 1–12.

[34] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. Tbar: Revisiting template-based automated
program repair. In Proceedings of the 28th ACM SIGSOFT international symposium on software testing and analysis.
31–42.

[35] Kui Liu, Anil Koyuncu, Kisub Kim, Dongsun Kim, and Tegawendé F Bissyandé. 2018. LSRepair: Live search of fix
ingredients for automated program repair. In 2018 25th Asia-Pacific Software Engineering Conference (APSEC). IEEE,
658–662.

[36] Fan Long and Martin Rinard. 2015. Staged program repair with condition synthesis. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. 166–178.

[37] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin Tan. 2020. Coconut: combining
context-aware neural translation models using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT
international symposium on software testing and analysis. 101–114.

[38] Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang, Jue Chen, Yibo Liu, Yuchen Liu, Binhua Li, Fei Huang, and
Yongbin Li. 2024. Lingma swe-gpt: An open development-process-centric language model for automated software
improvement. arXiv preprint arXiv:2411.00622 (2024).

[39] Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang, Yu Jiang, Changjian Wang, and Shanshan Li. 2023. At which training
stage does code data help llms reasoning? arXiv preprint arXiv:2309.16298 (2023).

[40] Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yongbin Li. 2024. How to understand whole
software repository? arXiv preprint arXiv:2406.01422 (2024).

[41] Yingwei Ma, Yue Yu, Shanshan Li, Zhouyang Jia, Jun Ma, Rulin Xu, Wei Dong, and Xiangke Liao. 2023. Mulcs: Towards
a unified deep representation for multilingual code search. In 2023 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 120–131.

[42] Xiaoguang Mao, Yan Lei, Ziying Dai, Yuhua Qi, and Chengsong Wang. 2014. Slice-based statistical fault localization.
Journal of Systems and Software 89 (2014), 51–62.

[43] Matias Martinez and Martin Monperrus. 2016. Astor: A program repair library for java. In Proceedings of the 25th
international symposium on software testing and analysis. 441–444.

[44] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable multiline program patch synthesis
via symbolic analysis. In Proceedings of the 38th international conference on software engineering. 691–701.

[45] Tam Nguyen, Phong Vu, and Tung Nguyen. 2019. Recommending exception handling code. In 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 390–393.

[46] Juliana Oliveira, Deise Borges, Thaisa Silva, Nelio Cacho, and Fernando Castor. 2018. Do android developers neglect
error handling? amaintenance-Centric study on the relationship between android abstractions and uncaught exceptions.
Journal of Systems and Software 136 (2018), 1–18.

[47] OpenAI. 2023. GPT-4 Turbo and GPT-4 Models. https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
Accessed: 2024-09-11.

[48] Aditya Pakki and Kangjie Lu. 2020. Exaggerated error handling hurts! an in-depth study and context-aware detection.
In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. 1203–1218.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4

Error Delayed Is Not Error Handled: Understanding and Fixing Propagated Error-Handling Bugs FSE114:23

[49] Martin P Robillard and Gail C Murphy. 2000. Designing robust Java programs with exceptions. In Proceedings of the 8th
ACM SIGSOFT international symposium on Foundations of software engineering: twenty-first century applications. 2–10.

[50] Guoping Rong, Yangchen Xu, Shenghui Gu, He Zhang, and Dong Shao. 2020. Can you capture information as you
intend to? A case study on logging practice in industry. In 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 12–22.

[51] Cindy Rubio-González, Haryadi S Gunawi, Ben Liblit, Remzi H Arpaci-Dusseau, and Andrea C Arpaci-Dusseau. 2009.
Error propagation analysis for file systems. In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 270–280.

[52] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model for automatic indexing. Commun. ACM
18, 11 (1975), 613–620.

[53] Qintao Shen, Hongyu Sun, Guozhu Meng, Kai Chen, and Yuqing Zhang. 2023. Detecting API Missing-Check Bugs
Through Complete Cross Checking of Erroneous Returns. In International Conference on Information Security and
Cryptology. Springer, 391–407.

[54] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. 2011. Rolecast: finding missing security checks when you do
not know what checks are. In Proceedings of the 2011 ACM international conference on Object oriented programming
systems languages and applications. 1069–1084.

[55] Yuchi Tian and Baishakhi Ray. 2017. Automatically diagnosing and repairing error handling bugs in c. In Proceedings
of the 2017 11th joint meeting on foundations of software engineering. 752–762.

[56] Weishi Wang, Yue Wang, Shafiq Joty, and Steven CH Hoi. 2023. Rap-gen: Retrieval-augmented patch generation with
codet5 for automatic program repair. In Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 146–158.

[57] Westley Weimer. 2004. Finding and preventing run-time error handling mistakes. In Proceedings of the 19th annual
ACM SIGPLAN Conference on Object-oriented programming, systems, languages, and applications. 419–431.

[58] Westley Weimer and George C Necula. 2008. Exceptional situations and program reliability. ACM Transactions on
Programming Languages and Systems (TOPLAS) 30, 2 (2008), 1–51.

[59] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009. Automatically finding patches using
genetic programming. In 2009 IEEE 31st International Conference on Software Engineering. IEEE, 364–374.

[60] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018. Context-aware patch generation for
better automated program repair. In Proceedings of the 40th international conference on software engineering. 1–11.

[61] Baijun Wu, John Peter Campora III, Yi He, Alexander Schlecht, and Sheng Chen. 2019. Generating precise error
specifications for c: A zero shot learning approach. Proceedings of the ACM on Programming Languages 3, OOPSLA
(2019), 1–30.

[62] Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen McCamant, and Kangjie Lu. 2021. Understanding and detecting
disordered error handling with precise function pairing. In the 30th USENIX Security Symposium (Security’21).

[63] Chunqiu Steven Xia and Lingming Zhang. 2024. Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42
each using ChatGPT. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’24).

[64] Xuezheng Xu, Yulei Sui, Hua Yan, and Jingling Xue. 2019. VFix: value-flow-guided precise program repair for null
pointer dereferences. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 512–523.

[65] Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and Konrad Rieck. 2013. Chucky: Exposing missing
checks in source code for vulnerability discovery. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. 499–510.

[66] He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and Martin Monperrus. 2022. Selfapr: Self-supervised program repair
with test execution diagnostics. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. 1–13.

[67] He Ye, Matias Martinez, and Martin Monperrus. 2022. Neural program repair with execution-based backpropagation.
In Proceedings of the 44th international conference on software engineering. 1506–1518.

[68] Dongyang Zhan, Xiangzhan Yu, Hongli Zhang, and Lin Ye. 2022. ErrHunter: Detecting Error-Handling Bugs in the
Linux Kernel Through Systematic Static Analysis. IEEE Transactions on Software Engineering 49, 2 (2022), 684–698.

[69] Quanjun Zhang, Chunrong Fang, Tongke Zhang, Bowen Yu, Weisong Sun, and Zhenyu Chen. 2023. Gamma: Revisiting
template-based automated program repair via mask prediction. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 535–547.

[70] Hao Zhong. 2022. Which Exception Shall We Throw?. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering. 1–12.

[71] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2009. Inferring resource specifications from natural language API
documentation. In 2009 IEEE/ACM International Conference on Automated Software Engineering. IEEE, 307–318.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

FSE114:24Haoran Liu, Shanshan Li, Zhouyang Jia, Yuanliang Zhang, Linxiao Bai, Si Zheng, Xiaoguang Mao, and Xiangke Liao

Received 2024-09-13; accepted 2025-04-01

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE114. Publication date: July 2025.

	Abstract
	1 Introduction
	2 Understanding Propagated Error-Handling Bug
	2.1 Study Methodology
	2.2 Resolution Time of PEH bugs
	2.3 Characteristics of the error propagation
	2.4 Characteristics of the error-handling action

	3 EH-Fixer Design
	3.1 EH Database
	3.2 Repair Agent
	3.3 Validate Agent

	4 Experiment
	4.1 Answer to RQ1: Performance on Real-World PEH Bugs
	4.2 Answer to RQ2: Comparison with the State-of-the-art
	4.3 Answer to RQ3: Ablation Study
	4.4 Answer to RQ4: Impact of Parameters

	5 Discussion
	5.1 Generalizability
	5.2 Static Analysis
	5.3 Error Propagation Path Analysis
	5.4 Patch Validation
	5.5 Language Limitation

	6 Related Work
	6.1 Error-Handling Bug Management
	6.2 Automatic Program Repair

	7 Conclusion
	8 Data Availability
	9 Acknowledgements
	References

